![\rule{50}{1}\large\blue\textsf{\textbf{\underline{Question:-}}}\rule{50}{1}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ora0musxw6h9xk0xg3b8hxbi3egn6al9en.png)
Solve the inequality for u:-
22≤-4u-2.
![\rule{50}{1}\large\blue\textsf{\textbf{\underline{Answer and how to solve:-}}}\rule{50}{1}](https://img.qammunity.org/2023/formulas/mathematics/high-school/fhar4n0mcy199h094mj2xtpgr501h0w0ef.png)
First, let's add 2 on both sides:-
![\longmapsto\sf{24\geq -4u}](https://img.qammunity.org/2023/formulas/mathematics/college/fhpj21php95o7bju4je80bctuu7ox98ljj.png)
Switching the order (and flipping the inequality sign):-
![\longmapsto\sf{-4u\geq 24}](https://img.qammunity.org/2023/formulas/mathematics/college/nkohzrn7wp5ab92mz8a74zluff66mkyijk.png)
Divide by -4 on both sides:-
![\longmapsto\sf{u\leq 6}](https://img.qammunity.org/2023/formulas/mathematics/college/xyaf9rwbwps6r6r3jwxc53u1mnxjwfp9ob.png)
Notice that the inequality sign changed from "less than" to "greater than". This happened because we divided by a negative number on both sides.
- Henceforth, We conclude that:-
![\longmapsto\underline{\boxed{\sf{u\leq -6}}}](https://img.qammunity.org/2023/formulas/mathematics/college/yohrgwaev3v7h0yrqxgjwhke273t97czn0.png)
Good luck with your studies.
#TogetherWeGoFar
![\rule{300}{1}](https://img.qammunity.org/2023/formulas/mathematics/high-school/2w6ves65xgxja0frpmrqcic9efxxwpb93y.png)