Answer:
Area = 551 cm² (nearest whole number)
Explanation:
Circumference
![\textsf{Circumference of a circle}=\sf 2 \pi r\quad\textsf{(where r is the radius)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qcsse3m11597f9a36tdtofkky1cc1k436e.png)
Given:
- Circumference = 83.21 cm
- π = 3.14
Substituting the given values into the formula and solving for r:
![\begin{aligned}\implies \sf 83.21 & =\sf 2 \cdot 3.14 \cdot r\\\\\sf r & = \sf (83.21)/(2 \cdot 3.14)\\\\\sf r & = \sf 13.25\:cm\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/b8sezwd4thqai2ev9zej6rwf2j90rx6vnc.png)
Area
![\textsf{Area of a circle}=\pi r^2 \quad \textsf{(where r is the radius)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ey3jfty23zomz5j5l84tk0bffyxerlv6nb.png)
Given:
![\begin{aligned}\implies \sf Area & =\sf 3.14 \cdot 13.25^2\\\\& = \sf 551\:cm^2\:(nearest\:whole\:number)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jphveezwjv9qmk2sged150vfph8gxf4hw5.png)
If the circumference of the hub cap was smaller, the radius would be smaller, hence the area would be smaller.