126,444 views
19 votes
19 votes
NEED HELP ON THIS

If z=-1-i, find z^10 in rectangular form.

The polar form of this problem is 3cis90degrees, what’s the rectangular form?

User Htanjo
by
2.7k points

1 Answer

11 votes
11 votes

Answer:

See below for answers and explanations

Explanation:

Problem 1

Let
z=r(\cos\theta+i\sin\theta) be a complex number, where
n is an integer and
n\geq 1. By DeMoivre's Theorem, if
z^n=r^n(\cos\theta+i\sin\theta)^n, then
z^n=r^n(\cos n\theta+i\sin n\theta).

Hence, we must first convert from rectangular to polar form:


z=-1-i\\\\r=√(a^2+b^2)\\\\r=√((-1)^2+(-1)^2)\\\\r=√(1+1)\\\\r=√(2)


\displaystyle \theta=\tan^(-1)\biggr((y)/(x)\biggr)\\\\\theta=\tan^(-1)\biggr((-1)/(-1)\biggr)\\ \\\theta=\tan^(-1)(1)\\\\\theta=45^\circ

Therefore, the rectangular form for the complex number is
z=√(2)(\cos45^\circ+i\sin45^\circ), and now we can apply DeMoivre's Theorem to raise the complex number to the 10th power:


z=√(2)(\cos45^\circ+i\sin45^\circ)\\\\z^(10)=√(2)^(10)(\cos45^\circ+i\sin45^\circ)^(10)\\\\z^(10)=2^5(\cos10\cdot45^\circ+i\sin10\cdot45^\circ)\\\\z^(10)=32(\cos450^\circ+i\sin450^\circ)\\\\z^(10)=32(0+i)\\\\z^(10)=32i

Therefore,
z^(10)=32i in rectangular form.

Problem 2


3\:\text{cis}\:90^\circ=3(\cos90^\circ+i\sin90^\circ)=3(0+i)=3i

Therefore,
3\:\text{cis}\:90^\circ=3i in rectangular form.

User Schub
by
2.6k points