Answer:
![d=(√(97))/(6)\approx1.6415](https://img.qammunity.org/2021/formulas/mathematics/college/ciy97k2uj4cnbf1eeu3nwriifkr3dvw7sl.png)
Explanation:
We have the two points: (2, 5/2) and (8/3, 1).
And we want to find the distance between them.
So, we can use the distance formula:
![d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2](https://img.qammunity.org/2021/formulas/mathematics/college/59mumd8gnglergz4obn7hgvn5ckm08ajet.png)
Let (2, 5/2) be (x₁, y₁) and let (8/3, 1) be (x₂, y₂). Substitute:
![d=\sqrt{((8)/(3)-2)^2+({1-(5)/(2))^2](https://img.qammunity.org/2021/formulas/mathematics/college/1j1yd7or23ye9b7tw2j3hzus76jrqyq9y5.png)
Evaluate the expressions within the parentheses. For the first term, we can change 2 to 6/3. For the second term, we can change 1 to 2/2. So:
![d=\sqrt{((8)/(3)-(6)/(3))^2+({(2)/(2)-(5)/(2))^2](https://img.qammunity.org/2021/formulas/mathematics/college/y3ctutl9ogl9t1lyiugg1z2otpcnvhzc6t.png)
Evaluate:
![d=\sqrt{((2)/(3))^2+(-(3)/(2))^2](https://img.qammunity.org/2021/formulas/mathematics/college/olevld0g25e56jjbhtfztroscun290m14k.png)
Square:
![d=\sqrt{(4)/(9)+(9)/(4)](https://img.qammunity.org/2021/formulas/mathematics/college/k5ylvbufaeno7cox2w63eo3j2ua7r2ksj6.png)
Add. We can change 4/9 to 16/36. And we can change 9/4 to 81/36. So:
![d=\sqrt{(16)/(36)+(81)/(36)}](https://img.qammunity.org/2021/formulas/mathematics/college/kne1v7fyok8fckvbo249hahp8pcy7cozb6.png)
Add:
![d=\sqrt{(97)/(36)}](https://img.qammunity.org/2021/formulas/mathematics/college/loswdv0nsnxm27zwmed34ehmfhcdcyye4n.png)
We can separate the square roots:
![d=(√(97))/(√(36))](https://img.qammunity.org/2021/formulas/mathematics/college/wo81updt7xrrkmsb6hhh22exjy2w9j9ca2.png)
Simplify. So, our distance is:
![d=(√(97))/(6)\approx1.6415](https://img.qammunity.org/2021/formulas/mathematics/college/ciy97k2uj4cnbf1eeu3nwriifkr3dvw7sl.png)