Answer: 245278 views
Series built : 1090, 1308, 1569.6, 1883.52, 2260.224, 2712.2688,...
As every term increases by 1.2, This is a geometric progression sequence.
![\sf Geometric \ Sequence: a_1 \ x \ (r^n - 1)/(r -1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ykmealai3qr9exi3teap82clpfsdac5gld.png)
Identify Variable's:
a1 = 1090
r = second term ÷ first term = 1308 ÷ 1090 = 1.2
n = 21
Step-by-step explanation:
![\rightarrow \sf 1090 \ x \ ((1.2)^(21) - 1)/((1.2) -1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/l0s7k8pdfrs0xy9narbt2ybxg83pjhqicx.png)
![\rightarrow \sf 245277.9035](https://img.qammunity.org/2023/formulas/mathematics/high-school/h9664hhujswdjdtbzcld7vn29s76w6yytx.png)
![\rightarrow \sf 245278 \ \ \ \ \ (rounded \ to \ nearest \ integer)](https://img.qammunity.org/2023/formulas/mathematics/high-school/99vbowaho9hbz2us641vs4c0uio65l5wcn.png)