Answer:
Quarterly deposit= $9,508.68
Step-by-step explanation:
First, we need to calculate the future value of the initial investment:
FV= PV*(1+i)^n
PV= $168,000
i= 0.10/4= 0.025
n= 10*4= 40
FV= 168,000*(1.025^40)
FV= $451,090.73
Difference= 1,092,000 - 451,090.73= $640,909.27
Now, to calculate the quarterly deposit, we need to use the following formula:
FV= {A*[(1+i)^n-1]}/i
A= quarterly deposit
Isolating A:
A= (FV*i)/{[(1+i)^n]-1}
A= (640,909.27*0.025) / [(1.025^40) - 1]
A= $9,508.68