Answer:
A) 79.08%
B) 5.55%
C)p = 1/3 is more appropriate than p = 0.1
Explanation:
This is a binomial probability distribution problem, so we will use the formula;
P(k) = (n!/(k!(n - k)!) × p^(k) × (1 - p)^(n-k)
We want to Compare the probability of observing 4 or more abused women in a sample of 15 if p = 1/3 = 0.3333 and the probability of observing 4 or more abused women in a sample of 15 if p = 0.10
Thus;
P(X ≥ 4) = P(4) + P(5) + P(6) + P(7) + P(8) + P(9) + P(10) + (P(11) + P(12) + P(13) + P(14) + P(15)
A) Thus at p = 0.3333;
P(4) = (15!/(4!(15 - 4)!) × 0.3333^(4) × (1 - 0.3333)^(15-4) = 0.1949
P(5) = (15!/(5!(15 - 5)!) × 0.3333^(5) × (1 - 0.3333)^(15-5) = 0.2143
Using online binomial probability calculator we can get the remaining values which are;
P(6) = 0.1786
P(7) = 0.1148
P(8) = 0.0574
P(9) = 0.0223
P(10) = 0.0067
P(11) = 0.0015
P(12) = 0.0003
P(13) = 0.0000
P(14) = 0.0000
P(15) = 0.0000
Thus;
P(X ≥ 4) = 0.1949 + 0.2143 + 0.1786 + 0.1148 + 0.0574 + 0.0223 + 0.0067 + 0.0015 + 0.0003 + 0 + 0 + 0 = 0.7908 = 79.08%
B) Now,for p = 0.1 and Using online binomial probability calculator, we have;
P(4) = 0.0428
P(5) = 0.0105
P(6) = 0.0019
P(7) = 0.0003
P(8) = 0.0000
P(9) = 0.0000
P(10) = 0.0000
P(11) = 0.0000
P(12) = 0.0000
P(13) = 0.0000
P(14) = 0.0000
P(15) = 0.0000
P(X ≥ 4) = 0.0428 + 0.0105 + 0.0019 + 0.0003 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 = 0.0555 = 5.55%
C) Comparing both Probabilities, 79.08% is far higher than 5.55%. Thus we can say that p = 1/3 is more appropriate than p = 0.1