98.2k views
1 vote
How do you these two questions?

How do you these two questions?-example-1
How do you these two questions?-example-1
How do you these two questions?-example-2
User Raghav
by
8.4k points

1 Answer

1 vote

Answer:

a) A = 3π/16

b) A = ∑₂°° (π/n⁴) = π⁵/90 − π

Explanation:

(a) The area between the curve and the x-axis is:

A = ∫ₐᵇ y (dx/dt) dt

x = ½ (1 − cos t) cos t

dx/dt = ½ (1 − cos t) (-sin t) + ½ sin t cos t

dx/dt = -½ sin t + ½ cos t sin t + ½ sin t cos t

dx/dt = -½ sin t + sin t cos t

dx/dt = -½ sin t (1 − 2 cos t)

y dx/dt = -½ sin t (1 − 2 cos t) × ½ (1 − cos t) sin t

y dx/dt = -¼ sin²t (1 − 3 cos t + 2 cos²t)

y dx/dt = -¼ sin²t + ¾ sin²t cos t − ½ sin²t cos²t

y dx/dt = ⅛ (-2 sin²t) + ¾ sin²t cos t − ½ (sin t cos t)²

y dx/dt = ⅛ (-1 + 1 − 2 sin²t) + ¾ sin²t cos t − ½ (½ sin(2t))²

y dx/dt = ⅛ (-1 + cos(2t)) + ¾ sin²t cos t − ⅛ sin²(2t)

y dx/dt = -⅛ + ⅛ cos(2t) + ¾ sin²t cos t + ¹/₁₆ (-2 sin²(2t))

y dx/dt = -⅛ + ⅛ cos(2t) + ¾ sin²t cos t + ¹/₁₆ (-1 + 1 − 2 sin²(2t))

y dx/dt = -⅛ + ⅛ cos(2t) + ¾ sin²t cos t + ¹/₁₆ (-1 + cos(4t))

y dx/dt = -⅛ + ⅛ cos(2t) + ¾ sin²t cos t − ¹/₁₆ + ¹/₁₆ cos(4t)

y dx/dt = -³/₁₆ + ⅛ cos(2t) + ¾ sin²t cos t + ¹/₁₆ cos(4t)

A = ∫₀ᵖⁱ [-³/₁₆ + ⅛ cos(2t) + ¾ sin²t cos t + ¹/₁₆ cos(4t)] dt

A = -³/₁₆ t + ¹/₁₆ sin(2t) + ¼ sin³t + ¹/₆₄ sin(4t) |₀ᵖⁱ

A = [-³/₁₆ π + ¹/₁₆ sin(2π) + ¼ sin³π + ¹/₆₄ sin(4π)] − [0 + ¹/₁₆ sin(0) + ¼ sin³0 + ¹/₆₄ sin(0)]

A = -³/₁₆ π

We got a negative answer because the graph traces to the left (x decreases as t increases). So the area is simply ³/₁₆ π.

b) Each circle has radius 1/n², so the area is π (1/n)² = π/n⁴.

The sum of the areas from n=2 to n=∞ is:

A = ∑₂°° (π/n⁴)

A = ∑₁°° (π/n⁴) − π

A = π ∑₁°° (1/n⁴) − π

A = π (π⁴/90) − π

A = π⁵/90 − π

User Xashru
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories