168k views
1 vote
Find gradient

xe^y + 4 ln y = x² at (1, 1)​

User Keeg
by
5.3k points

1 Answer

2 votes


xe^y+4\ln y=x^2

Differentiate both sides with respect to x, assuming y = y(x).


(\mathrm d(xe^y+4\ln y))/(\mathrm dx)=(\mathrm d(x^2))/(\mathrm dx)


(\mathrm d(xe^y))/(\mathrm dx)+(\mathrm d(4\ln y))/(\mathrm dx)=2x


(\mathrm d(x))/(\mathrm dx)e^y+x(\mathrm d(e^y))/(\mathrm dx)+\frac4y(\mathrm dy)/(\mathrm dx)=2x


e^y+xe^y(\mathrm dy)/(\mathrm dx)+\frac4y(\mathrm dy)/(\mathrm dx)=2x

Solve for dy/dx :


e^y+\left(xe^y+\frac4y\right)(\mathrm dy)/(\mathrm dx)=2x


\left(xe^y+\frac4y\right)(\mathrm dy)/(\mathrm dx)=2x-e^y


(\mathrm dy)/(\mathrm dx)=(2x-e^y)/(xe^y+\frac4y)

If y ≠ 0, we can write


(\mathrm dy)/(\mathrm dx)=(2xy-ye^y)/(xye^y+4)

At the point (1, 1), the derivative is


(\mathrm dy)/(\mathrm dx)\bigg|_(x=1,y=1)=\boxed{(2-e)/(e+4)}

User Grapho
by
6.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.