Answer:
M = 4.33885225095
Explanation:
Area of the square ABFE = 10² = 100
M = 100 - (2P + Q)
Let’s calculate 2P + Q :
The area 2P + Q = area ΔABC + area of sector ACE + area of sector BCF
Note :
ΔABC is an equilateral triangle
m∠CBF = m∠CAE = 30°
area ΔABC = (CG × AB)÷2 = (8.660254037844×10)÷2 = 43.30127018922
CG = √(10^2 - 5^2)=8.660254037844 (Pythagorean theorem)
area of sector BCF = area ΔACE = 100π ÷ 12 = (8.333333333333)π
then
Area 2P + Q = area ΔABC + area sector ACE + area sector BCF
= 43.30127018922+(100÷12)π+(100÷12)π
= 43.30127018922+ (8.333333333333)π + (8.333333333333)π
= 95.66114774905
Conclusion:
M = 100 - (2P + Q) = 100-95.66114774905 = 4.33885225095