152k views
1 vote
19. Solve the equation 3cos x = 8tan x, between Oº and 360°

O [A] 3.99,5.44
[B] 19.5, 160.5
[C] 0.197,3.34
O [D] 1.89, 5.03

User Xandra
by
8.1k points

1 Answer

3 votes


3\cos x=5\tan x\\\\3\cos x=5\cdot(\sin x)/(\cos x)\\\\3\cos^2 x=5\sin x\\\\3(1-\sin^2x)=5\sin x\\\\-3\sin^2x-5\sin x+3=0\\\\t=\sin x\qquad\qqaud t\in<-1, 1>\\\\-3t^2-5t+3=0\\\\3t^2+5t-3=0\quad\implies\quad a=3\,,\ b=5\,,\ c=-3\\\\t=(-5\pm√(5^2-4\cdot3\cdot(-3)))/(2\cdot3)=(-5\pm√(25+36))/(6)=(-5\pm√(61))/(6)\\\\t_1=(-5+√(61))/(6)\approx0.4684\ ,\qquad t_2=(-5-√(61))/(6)\approx-2.136\\otin<-1,\,1>


\sin x=0.4684\quad\wedge\quad x\in(0^o,\ 360^o)\\\\x\approx28^o\qquad\qquad\vee\qquad x\approx152^o\\\\\\\sin x=0.4684\quad\wedge\quad x\in(0,\ 2\pi)\\\\x\approx0.4887\qquad\qquad\vee\qquad x\approx2.6529

User Alptugay
by
8.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories