Answer:
![x=5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/r130cmidu5qpu4isx9n84rpneq2ec7gp1u.png)
Explanation:
We have the equation:
![34\cdot 3^(x-2)-2\cdot 3^(x-3)=0.8\cdot 10^(x-2)+10^(x-3)](https://img.qammunity.org/2021/formulas/mathematics/college/mddutux9bwvnz9vvbzqp3ugu92vhhuuvln.png)
Let's simplify this a bit. Let
. Then
. We can substitute the exponents:
![34\cdot3^u-2\cdot 3^(u-1)=0.8\cdot 10^u+10^(u-1)](https://img.qammunity.org/2021/formulas/mathematics/college/3306t9tretrw119vozxxleg1xcqxou529s.png)
Use the properties of exponents, we can write
. We can do the same thing on the right. So:
![34\cdot3^u-2\cdot (3^u)/(3)=0.8\cdot 10^u+(10^u)/(10)](https://img.qammunity.org/2021/formulas/mathematics/college/b6accrpsnn4swws2xj9z0prqs9p5oa6v8i.png)
We can now factor out a
from the left and a
on the right. This yields:
![3^u(34-2\cdot(1)/(3))=10^u(0.8+ (1)/(10))](https://img.qammunity.org/2021/formulas/mathematics/college/p9arleeo3xd0775ybqhvc5uqn8ami1qjxf.png)
Evaluate the expressions within the parentheses:
![3^u(34-(2)/(3))=10^u((9)/(10))](https://img.qammunity.org/2021/formulas/mathematics/college/psxiiawljhgso315iozbxz6ekwugt313lk.png)
Evaluate:
![3^u((100)/(3))=10^u((9)/(10))](https://img.qammunity.org/2021/formulas/mathematics/college/yexjntblux6hewlxcibfvwzd95b4uio3pe.png)
Now, let's multiply both sides by
. So:
![3^u=10^u((9)/(10))((3)/(100))](https://img.qammunity.org/2021/formulas/mathematics/college/sr4j7xcmx2621l53ajro6up1ueqf361kvn.png)
Also, let's divide both sides by
. Multiply on the right:
![(3^u)/(10^u)=(27)/(1000)](https://img.qammunity.org/2021/formulas/mathematics/college/x040kf9mkivcgwcbvbjrdcauyxayz3mfms.png)
Therefore:
![3^u=27\text{ and } 10^u=1000](https://img.qammunity.org/2021/formulas/mathematics/college/hzka1gcur69z7p8o59vx27iul8xu27092l.png)
We can now substitute back u. Notice that 27 is the same as 3 cubed and 1000 is the same as 10 cubed. So:
![3^(x-2)=3^3\text{ and } 10^(x-2)=10^3](https://img.qammunity.org/2021/formulas/mathematics/college/7i6ehmba6zp70yt55vzlr50tlptxrfsktc.png)
Since they have the same base, their exponents must be equal. Therefore:
![x-2=3](https://img.qammunity.org/2021/formulas/mathematics/college/mredd4rcusfcmieofvchrg64vxfg3211ia.png)
Add 2 to both sides:
![x=5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/r130cmidu5qpu4isx9n84rpneq2ec7gp1u.png)
So, the value of x is 5.
And we're done!