211k views
4 votes
Please solve this question.​

Please solve this question.​-example-1
User M Raymaker
by
8.5k points

1 Answer

4 votes

Answer: see proof below

Explanation:

Use the Cofunction Identity: sin (90 - A) = cos (A)

Use the Double Angle Identity: sin(2A) = 2 sinA cosA

Use the Triple Angle Identity: cos (3A) = 4cos³A - 3cosA

Use the Zero Product Property: If a · b = 0, then a = 0 or b = 0

Use Pythagorean Identity: cos²A + sin²A = 1 → cos²A = 1 - sin²A

Use Quadratic Formula:
x=(-b\pm √(b^2-4ac))/(2a)

Proof LHS → RHS:

Assumption: Let A = 18°

Multiplication: then 5A = 5(18°)

→ 5A = 90°

Expand: 2A + 3A = 90°

→ 2A = 90° - 3A

Apply sin: sin (2A) = sin (90° - 3A)

Cofunction: sin (2A) = cos (3A)

Double Angle: 2 sinA cos A = cos (3A)

Triple Angle: 2 sin A cos A = 4cos³A - 3cos A

→ -4cos³A + 3cos A + 2sinA cos A = 0

Factor: cos A(-4cos² A + 3 + 2sin A) = 0

Zero Product Property: cos A = 0 or -4cos² A + 3 + 2sin A = 0

Disregard (since cos A ≠ 0)

Pythagorean: -4cos² A + 3 + 2sin A = 0

→ -4(1 - sin² A) + 3 + 2sin A = 0

→ -4 + 4sin² A + 3 + 2sin A = 0

Simplify: 4sin² A + 2sin A - 1 = 0

a=4 b=2 c= -1


\text{Quadratic Formula:}\qquad \sin A=(-(2)\pm √(2^2-4(4)(-1)))/(2(4))


=(-2\pm √(4+16))/(8)


=(-2\pm √(20))/(8)


=(-2\pm 2√(5))/(2(4))


=(-1\pm √(5))/(4)


=( √(5)-1)/(4)


\text{Substitute A = 18:}\qquad \sin 18=( √(5)-1)/(4)

Please solve this question.​-example-1
Please solve this question.​-example-2
Please solve this question.​-example-3
User Rselvaganesh
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories