186k views
2 votes
What is an equation of the line that passes through the point (-6,-6) and is parallel to the line x-3y=18

1 Answer

4 votes
Answer in slope-intercept form:
y = (1/3)x - 4


Step-by-step explanation:
The general form for a line in slope-intercept form is
y = mx + b

where:
“m” is the slope,
“b” is the y-intercept,
“x” and “y” are points on the graph.


A line parallel to x - 3y = 18 will have the same slope, or “m” in slope-intercept form.

Isolate “y” to find the slope:
x - 3y = 18
-3y = -x + 18
y = (1/3)x - 6

m = 1/3


Note that ordered pairs are written (x, y).

Substitute (-6, -6) and m = 1/3 into the general form.
y = mx + b
-6 = (1/3)(-6) + b
Simplify and isolate “b”.
-6 = -2 + b
b = -4


Write the equation of the line using “m” and “b”.
y = (1/3)x - 4
User Taro Kiritani
by
5.6k points