160k views
3 votes
Find all solutions to the equation in the interval [0,2n) cos x = sin 2x

1 Answer

3 votes

Answer:


\huge\boxed{x\in\left\{(\pi)/(6);\ (\pi)/(2)\ (3\pi)/(2);\ (5\pi)/(6)\right\}}

Explanation:


\cos x=\sin2x\qquad|\text{use}\ \sin\theta=2\sin\theta\cos\theta\\\\\cos x=2\sin x\cos x\qquad|\text{subtract}\ \cos x\ \text{from both sides}\\\\0=2\sin x\cos x-\cos x\\\\2\sin x\cos x-\cos x=0\qquad|\text{distribute}\\\\\cos x(2\sin x-1)=0\iff\underbrace{\cos x=0}_((1))\ \vee\ \underbrace{2\sin x-1=0}_((2))


(1)\\\cos x=0\Rightarrow x=(\pi)/(2)+k\pi;\ k\in\mathbb{Z}


(2)\\2\sin x-1=0\qquad|\text{add 1 to both sides}\\\\2\sin x=1\qquad|\text{divide sides by 2}\\\\\sin x=(1)/(2)\Rightarrow x=(\pi)/(6)+2k\pi\ \vee\ x=(5\pi)/(6)+2k\pi


\text{From}\ (1)\ \text{and}\ (2)\ \text{we have}\\\\x=(\pi)/(2)+k\pi\ \vee\ x=(\pi)/(6)+2k\pi\ \vee\ x=(5\pi)/(6)+2k\pi\\\\\text{We have the interval}\ x\in[0;2\pi).\ \text{Therefore the solution is:}\\\\x\in\left\{(\pi)/(6);\ (\pi)/(2)\ (3\pi)/(2);\ (5\pi)/(6)\right\}

Find all solutions to the equation in the interval [0,2n) cos x = sin 2x-example-1
User Guitarflow
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories