232k views
5 votes
1. In ABC, A=45 degrees, B=75 degrees, and BC=12. What is the length of AB?

User Dorchard
by
5.8k points

1 Answer

2 votes

We know that sum of the interior angles of any triangle equal 180° :

So :

A + B + C = 180°

45° + 75° + C = 180°

120° + C = 180°

Both sides minus ( 120°) :

C = 180° - 120°

C = 60°

_________________________________

According to the theorem of sinuses :


(AB)/( \sin(C) ) = (BC)/( \sin(A) ) \\


(AB)/( \sin(60) ) = (12)/( \sin(45) ) \\


(AB)/( ( √(3) )/(2) ) = (12)/( ( √(2) )/(2) ) \\


Multiply \: both \: sides \: by \: ( √(3) )/(2)


AB = (24)/( √(2) ) * ( √(3) )/(2) \\


AB = (12 √(3) )/( √(2) ) \\


AB = (2 * 6 √(3) )/( √(2) ) \\


AB = \frac{ ({ √(2) })^(2) * 6 √(3) }{ √(2) } \\


AB = ( √(2) * √(2) * 6 √(3) )/( √(2) ) \\


AB = ( √(2) * 6 √(3) )/(1) \\


AB = √(2) * 6 √(3)


AB = 6 √(2 * 3)


AB = 6 √(6)

_________________________________

I think this is the correct answer.

And we're done.

Thanks for watching buddy good luck.

♥️♥️♥️♥️♥️

User Beowulf
by
5.2k points