121k views
3 votes
Prove: a^2+b^2/2 ≥ab

User Deasserted
by
6.0k points

1 Answer

1 vote

We know that the square of any number is greater than or equal to zero ;

So if have a number like x :


( {x})^(2) \geqslant 0

_________________________________

Now we have a number which is

( a - b ) ;

So we have :


( {a - b})^(2) \geqslant 0

##############################

Reminder :


( {a - b})^(2) = {a}^(2) - 2ab + {b}^(2)

##############################

So we have :


{a}^(2) - 2ab + {b}^(2) \geqslant 0

Both sides plus 2ab :


{a}^(2) + {b}^(2) \geqslant 2ab

Divided both sides by 2 :


\frac{ {a}^(2) + {b}^(2) }{2} \geqslant ab \\

_________________________________

And we're done.

Thanks for watching buddy good luck.

♥️♥️♥️♥️♥️

User Bence Pattogato
by
6.3k points