Answer:
![m=8x-5-4\Delta x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ew2h5rz837wi6gsftrui99971fm62x5gln.png)
Explanation:
We have the function:
![f(x)=4x^2-5x-1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/uvw6y8ojubodvs3b94vgn9fjqdzsdugo0p.png)
And we want to use the difference quotient:
![m=(f(x+\Delta x)-f(x))/(\Delta x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/b1tope0t2cx1gcmdh8v0yhf4vv1h42mmb8.png)
To find the slope function.
So, let's substitute
for our function. This yields:
![m=((4(x+\Delta x)^2-5(x+\Delta x)-1)-(4x^2-5x-1)))/(\Delta x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/12h3o9uwzseb4ohto4itiwu67rfb9zeuhj.png)
Let's square. Use the perfect square trinomial pattern. This yields:
![m=((4(x^2+2x\Delta x-\Delta x^2)-5(x+\Delta x)-1)-(4x^2-5x-1)))/(\Delta x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mb0hw78j2ro4a6ldplxsexts1njhfdrzya.png)
Distribute:
![m=((4x^2+8x\Delta x-4\Delta x^2-5x-5\Delta x-1)-(4x^2-5x-1))/(\Delta x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/abapsb2ffjp37p4gir60mjw401ol57jmya.png)
Distribute the right:
![m=((4x^2+8x\Delta x-4\Delta x^2-5x-5\Delta x-1)+(-4x^2+5x+1))/(\Delta x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ek9znxxgx1kvioo5jumktlyn67yddsbz0f.png)
Combine like terms:
![m=((4x^2-4x^2)+(-5x+5x)+(1-1)+(8x\Delta x-4\Delta x^2-5\Delta x))/(\Delta x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/lak26zehv1ocndpsfdxdf27vp7fya8mfjw.png)
The first three terms will cancel. This leaves us with:
![m=(8x\Delta x-4\Delta x^2-5\Delta x)/(\Delta x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xucvqvcqaag3ks99uuwi7evln5kuz9bdbp.png)
We can factor out a Δx from the numerator:
![m=(\Delta x(8x-4\Delta x-5))/(\Delta x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5hqqazy5yzmzugmrw2vi51uzn1g2q6s8gu.png)
The Δx will cancel. So, our slope function is:
![m=8x-5-4\Delta x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ew2h5rz837wi6gsftrui99971fm62x5gln.png)
And we're done!