Answer:
Kindly check explanation
Explanation:
Assuming a normal distribution :
Sample (x) :25.5, 26.1, 26.8, 23.2, 24.2, 28.4, 25.0, 27.8, 27.3, 25.7
Null hypothesis : μ = 25
Alternative hypothesis : μ > 25
α = 0.05
Decision region :
Reject Null if :
t0 > t
t can be obtained from the t distribution table at : df = (n - 1) = 10 - 1 = 9 ; α = 0.05
Hence, t(0.05, 9) = 1.833
From the sample given ; t0
t0 = (m - μ) / (s /√n)
n = sample size = 10
s = sample standard deviation
m = sample mean
Using calculator :
25.5, 26.1, 26.8, 23.2, 24.2, 28.4, 25.0, 27.8, 27.3, 25.7
Sample mean(m) = 26
Sample standard deviation (s) = 1.624
t0 = (26 - 25) / (1.624 /√10) = 1.947
1.947 > 1.833
Hence, reject Null
B)
Confidence interval at 90% ; α = 0.1
m ± t(0.1/2 ; 9) * s/√n
m - t * s/√n ≤ μ ≤ m + t * s/√n
26 - 1.833 * (1.624/√10) ≤ μ ≤ 26 + 1.833 * (1.624/√10)
25.059 ≤ μ ≤ 26.941