Answer:
tan x
Explanation:
(tan-x)[sec(pi/2)-x] (sin-x)
We know that tan (-x) = - tan (x) and sin (-x) = - sin (x)
-(tanx)[sec(pi/2)-x] -(sinx)
(tanx)[sec(pi/2)-x] (sinx)
Using the identity sec = 1/ cos
sec ( pi/2 -x) =1/cos ( pi /2 -x)
We know that cos (s-t)=cos (s) cos(t) + sin (s) sin (t)
1/ ( cos pi/2 cos x + sin pi/2 sin x) = 1/(0 cos x - 1 sinx) = 1 / sinx
Replacing into the equation
(tanx)[1/ sinx] (sinx)
tan x