Answer:
Quarterly deposit= $18,743.98
Step-by-step explanation:
i= 0.06/4= 0.015
n= 10*4= 40
First, we need to determine the future value of the $200,000 using the following formula:
FV= PV*(1+i)^n
FV= 200,000*1.015^40
FV= $362,803.68
Now, we calculate the quarterly deposit to cover for the difference:
Difference= 1,380,000 - 362,803.68= $1,017,196.32
FV= {A*[(1+i)^n-1]}/i
A= quarterly deposit
Isolating A:
A= (FV*i)/{[(1+i)^n]-1}
A= (1,017,196.32*0.015) / [(1.015^40) - 1]
A= $18,743.98