Answer:
![(h\circ g)(d)=-8d +23](https://img.qammunity.org/2021/formulas/mathematics/high-school/ay79qc2x8r0mxhb2evu3d4tvb6rzxypnqq.png)
Explanation:
Composite Function
Given g(d) and h(d) real functions, the composite function named (hog)(d) is defined as:
![(h\circ g)(d)=h(g(x))](https://img.qammunity.org/2021/formulas/mathematics/high-school/ak8f0g8gkv2wbo8vnrzl91kbvlypg0tn6t.png)
For practical purposes, it can be found by substituting g into h.
The functions g and h are given as:
![g(d) = 2d - 5](https://img.qammunity.org/2021/formulas/mathematics/high-school/yur8nrj8upuyi4h728m03smnhr4t1o7uj4.png)
![h(d) = -4d +3](https://img.qammunity.org/2021/formulas/mathematics/high-school/pzp6tx140pyu7e85h2u1vc2r4gpv6f8mf7.png)
Substituting g into h:
![(h\circ g)(d)=-4(2d - 5) +3](https://img.qammunity.org/2021/formulas/mathematics/high-school/xn1pglm1ahzfxfgcm4eegnjndg9a2ldykv.png)
Operating:
![(h\circ g)(d)=-8d +20 +3](https://img.qammunity.org/2021/formulas/mathematics/high-school/jpe3m68gi9ezazjouyto81hlz6w45882sl.png)
![\boxed{(h\circ g)(d)=-8d +23}](https://img.qammunity.org/2021/formulas/mathematics/high-school/apkkf0rpkjxe91qkfgfckndmdyfg2wzdu2.png)