106k views
2 votes
2.7·6.2–9.3·1.2+6.2·9.3–1.2·2.7 not pemdas

User Peteb
by
4.9k points

1 Answer

3 votes

60

See steps

Step by Step Solution:

More Icon

Reformatting the input :

Changes made to your input should not affect the solution:

(1): "2.7" was replaced by "(27/10)". 8 more similar replacement(s)

STEP

1

:

27

Simplify ——

10

Equation at the end of step

1

:

27 62 93 12 62 93 12 27

(((——•——)-(——•——))+(——•——))-(——•——)

10 10 10 10 10 10 10 10

STEP

2

:

6

Simplify —

5

Equation at the end of step

2

:

27 62 93 12 62 93 6 27

(((——•——)-(——•——))+(——•——))-(—•——)

10 10 10 10 10 10 5 10

STEP

3

:

93

Simplify ——

10

Equation at the end of step

3

:

27 62 93 12 62 93 81

(((——•——)-(——•——))+(——•——))-——

10 10 10 10 10 10 25

STEP

4

:

31

Simplify ——

5

Equation at the end of step

4

:

27 62 93 12 31 93 81

(((——•——)-(——•——))+(——•——))-——

10 10 10 10 5 10 25

STEP

5

:

6

Simplify —

5

Equation at the end of step

5

:

27 62 93 6 2883 81

(((——•——)-(——•—))+————)-——

10 10 10 5 50 25

STEP

6

:

93

Simplify ——

10

Equation at the end of step

6

:

27 62 93 6 2883 81

(((——•——)-(——•—))+————)-——

10 10 10 5 50 25

STEP

7

:

31

Simplify ——

5

Equation at the end of step

7

:

27 31 279 2883 81

(((—— • ——) - ———) + ————) - ——

10 5 25 50 25

STEP

8

:

27

Simplify ——

10

Equation at the end of step

8

:

27 31 279 2883 81

(((—— • ——) - ———) + ————) - ——

10 5 25 50 25

STEP

9

:

Calculating the Least Common Multiple

9.1 Find the Least Common Multiple

The left denominator is : 50

The right denominator is : 25

Number of times each prime factor

appears in the factorization of:

Prime

Factor Left

Denominator Right

Denominator L.C.M = Max

{Left,Right}

2 1 0 1

5 2 2 2

Product of all

Prime Factors 50 25 50

Least Common Multiple:

50

Calculating Multipliers :

9.2 Calculate multipliers for the two fractions

Denote the Least Common Multiple by L.C.M

Denote the Left Multiplier by Left_M

Denote the Right Multiplier by Right_M

Denote the Left Deniminator by L_Deno

Denote the Right Multiplier by R_Deno

Left_M = L.C.M / L_Deno = 1

Right_M = L.C.M / R_Deno = 2

Making Equivalent Fractions :

9.3 Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example : 1/2 and 2/4 are equivalent, y/(y+1)2 and (y2+y)/(y+1)3 are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

L. Mult. • L. Num. 837

—————————————————— = ———

L.C.M 50

R. Mult. • R. Num. 279 • 2

—————————————————— = ———————

L.C.M 50

Adding fractions that have a common denominator :

9.4 Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

837 - (279 • 2) 279

——————————————— = ———

50 50

Equation at the end of step

9

:

279 2883 81

(——— + ————) - ——

50 50 25

STEP

10

:

Adding fractions which have a common denominator

10.1 Adding fractions which have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

279 + 2883 1581

—————————— = ————

50 25

Equation at the end of step

10

:

1581 81

———— - ——

25 25

STEP

11

:

Adding fractions which have a common denominator

11.1 Adding fractions which have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

1581 - (81) 60

——————————— = ——

25 1

Final result :

60

User Navjot Ahuja
by
4.7k points