217k views
3 votes
H(x)=-x^2+6x. So what is the value of h(2)

User K K
by
7.7k points

1 Answer

6 votes

✩ Answer:

✧・゚: *✧・゚:*✧・゚: *✧・゚:*✧・゚: *✧・゚:*


\bold{Hello!}\\\bold{Your~answer~is~below!}

✩ Step-by-step explanation:

✧・゚: *✧・゚:*✧・゚: *✧・゚:*✧・゚: *✧・゚:*

✺ Quadratic polynomials can be factored using the transformation
ax^2+bx+c=a(x-x_(1))(x-x_(2) ), where
x_(1) and
x_(2) are the solutions of the quadratic equation
ax^2+bx+c=0:


  • -x^2+6x=0

✺ All equations of the form
ax^2+bx+c=0 can be solved using the quadratic formula:


  • -b=\frac{+}\\√(b^2-4ac)\\~~~~~~~~~~~~~2a

✺ The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction:


  • x=\frac{\sqrt{-6\frac{+}\\√(6^2)}}{2(-1)}

✺ Take the square root of
6^2:


  • x=\frac{\sqrt{-6\frac{+}\\{6}}}{2(-1)}

✺ Multiply
2 times
-1:


  • x=\frac{\sqrt{-6\frac{+}\\{6}}}{-2}

✺ Now solve the equation
x=\frac{\sqrt{-6\frac{+}\\{6}}}{-2} when ± is plus. Add
-6 to
6:


  • x=(0)/(-2)

✺ Divide
0 by
-2:


  • x=0

-OR-

✺ Now solve the equation
x=\frac{\sqrt{-6\frac{+}\\{6}}}{-2} when ± is minus. Subtract
6 from
-6:


  • x=(-12)/(-2)

✺ Divide
-12 by
-2:


  • x=6

Optional : Factor the original expression using
ax^2+bx+c=a(x-x_(1))(x-x_(2) ). Substitute
0 for
x_(1) and
6 for
x_(2):


  • -x^2+6x=-x(x-6)

✩ Answer:

Factored Form:
x(x-6)

Exact Form:
x=6

Graph Point Form:
x=(6,0)


Hope~this~helps~and,\\Best~of~luck!\\\\~~~~~-TotallyNotTrillex

"ටᆼට"

H(x)=-x^2+6x. So what is the value of h(2)-example-1
User Gregw
by
7.4k points