120k views
11 votes
The points P (22, 15), Q (−13, c) and R (k, 24) all lie on a circle, centre (2, 0). Find the radius of the circle and the possible values of the constants c and k.

User Tomvodi
by
3.4k points

1 Answer

11 votes

Answer:

r = 25

c = 20

k = 9 or k = -5

Explanation:

Circle of center A(2, 0) and radius r.

P (22, 15), Q(−13, c) and R (k, 24) all lie on a circle,


r=AP=\sqrt{\left( 22-2\right)^(2) +\left( 15-0\right)^(2) }


=25

Q(−13, c) lies on the circle then ,


AQ=r\Longrightarrow AQ^(2)=r^(2)\Longrightarrow (-13-2)^(2)+(c-0)^2=25^2=625


\Longrightarrow 225+c^(2)=625


\Longrightarrow c=20

R (k, 24) lies on the circle then ,


AR=r\Longrightarrow AR^(2)=r^(2)\Longrightarrow (k-2)^(2)+(24-0)^2=25^2=625


\Longrightarrow (k-2)^(2)+576=625


\Longrightarrow (k-2)^(2)=49


\Longrightarrow k-2=7\ \ or \ \ k-2=-7


\Longrightarrow k=9\ \ or \ \ k=-5

The points P (22, 15), Q (−13, c) and R (k, 24) all lie on a circle, centre (2, 0). Find-example-1
User Tirolel
by
2.8k points