120k views
11 votes
The points P (22, 15), Q (−13, c) and R (k, 24) all lie on a circle, centre (2, 0). Find the radius of the circle and the possible values of the constants c and k.

User Tomvodi
by
8.0k points

1 Answer

11 votes

Answer:

r = 25

c = 20

k = 9 or k = -5

Explanation:

Circle of center A(2, 0) and radius r.

P (22, 15), Q(−13, c) and R (k, 24) all lie on a circle,


r=AP=\sqrt{\left( 22-2\right)^(2) +\left( 15-0\right)^(2) }


=25

Q(−13, c) lies on the circle then ,


AQ=r\Longrightarrow AQ^(2)=r^(2)\Longrightarrow (-13-2)^(2)+(c-0)^2=25^2=625


\Longrightarrow 225+c^(2)=625


\Longrightarrow c=20

R (k, 24) lies on the circle then ,


AR=r\Longrightarrow AR^(2)=r^(2)\Longrightarrow (k-2)^(2)+(24-0)^2=25^2=625


\Longrightarrow (k-2)^(2)+576=625


\Longrightarrow (k-2)^(2)=49


\Longrightarrow k-2=7\ \ or \ \ k-2=-7


\Longrightarrow k=9\ \ or \ \ k=-5

The points P (22, 15), Q (−13, c) and R (k, 24) all lie on a circle, centre (2, 0). Find-example-1
User Tirolel
by
6.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories