115k views
0 votes
7. All of the following are perfect square trinomials EXCEPT one. Which is it?

A. 4x2 + 12xy + 9y2
C. xy2 - 4x2y2 + 4x2y2
B. 9a? - 36a + 36
D. a²b2 + 4a3b + 4a?​

1 Answer

4 votes

Answer:

All answers EXCEPT answer C. are perfect square trinomials.

Explanation:

A perfect square trinomial is polynomial that satisfies the following condition:


(a+b)^(2) = a^(2)+2\cdot a \cdot b + b^(2),
\forall\,a,b\in\mathbb{R}

Let prove if each option observe this:

a)
4\cdot x^(2) + 12\cdot x\cdot y + 9\cdot y^(2)

1)
4\cdot x^(2) + 12\cdot x\cdot y + 9\cdot y^(2) Given

2)
(2\cdot x)^(2)+ 2\cdot (2\cdot x)\cdot (3\cdot y)+(3\cdot y)^(2) Definition of power/Distributive, associative and commutative properties.

3)
a = 2\cdot x,
b = 3\cdot y Definition of perfect square trinomial/Result.

b)
9\cdot a^(2)-36\cdot a + 36

1)
9\cdot a^(2)-36\cdot a + 36 Given.

2)
(3\cdot a)^(2)-2\cdot (3\cdot a)\cdot 6 + 6^(2) Definition of power/Distributive, associative and commutative properties.

3)
a = 3\cdot a,
b = 6 Definition of perfect square trinomial/Result.

c)
x\cdot y^(2)-4\cdot x^(2)\cdot y^(2)+4\cdot x^(2)\cdot y^(2)

1)
x\cdot y^(2)-4\cdot x^(2)\cdot y^(2)+4\cdot x^(2)\cdot y^(2) Given

2)
x\cdot y\cdot (1-4\cdot x+4\cdot x) Distributive property.

3)
x\cdot y \cdot 1 Existence of the additive inverse/Modulative property.

4)
x\cdot y Modulative property/Result.

d)
a^(2)\cdot b^(2)+4\cdot a^(3)\cdot b + 4\cdot a^(4)

1)
a^(2)\cdot b^(2)+4\cdot a^(3)\cdot b + 4\cdot a^(4) Given

2)
(a\cdot b)^(2)+2\cdot (a\cdot b)\cdot (2\cdot a^(2))+(2\cdot a^(2)) Definition of power/Distributive, associative and commutative properties.

3)
a = a\cdot b,
b = 2\cdot a^(2) Definition of perfect square trinomial.

All answers EXCEPT answer C. are perfect square trinomials.

User Olsavage
by
4.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.