Answer:
All answers EXCEPT answer C. are perfect square trinomials.
Explanation:
A perfect square trinomial is polynomial that satisfies the following condition:
,
![\forall\,a,b\in\mathbb{R}](https://img.qammunity.org/2021/formulas/mathematics/college/9nblwsx3j8jr4moxib8xsi908a3z6hlyt1.png)
Let prove if each option observe this:
a)
![4\cdot x^(2) + 12\cdot x\cdot y + 9\cdot y^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/1ieazeuaxliwskkl7oow0uc3s13rgt5t81.png)
1)
Given
2)
Definition of power/Distributive, associative and commutative properties.
3)
,
Definition of perfect square trinomial/Result.
b)
![9\cdot a^(2)-36\cdot a + 36](https://img.qammunity.org/2021/formulas/mathematics/college/3yndzyopcz1ko59yofq3c0rsqdgsr6c619.png)
1)
Given.
2)
Definition of power/Distributive, associative and commutative properties.
3)
,
Definition of perfect square trinomial/Result.
c)
![x\cdot y^(2)-4\cdot x^(2)\cdot y^(2)+4\cdot x^(2)\cdot y^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/8c3ctaqybvp1rgmrws1b8kdin1zrt7c094.png)
1)
Given
2)
Distributive property.
3)
Existence of the additive inverse/Modulative property.
4)
Modulative property/Result.
d)
![a^(2)\cdot b^(2)+4\cdot a^(3)\cdot b + 4\cdot a^(4)](https://img.qammunity.org/2021/formulas/mathematics/college/vxc3lmn09z3xlayhx6yzwj1fz2ewse7rym.png)
1)
Given
2)
Definition of power/Distributive, associative and commutative properties.
3)
,
Definition of perfect square trinomial.
All answers EXCEPT answer C. are perfect square trinomials.