Answer:
sinФ = 8/17
cosФ = 15/17
tan Ф = 8/15
csc Ф = 17/8
sec Ф = 17/15
cot Ф = 15/8
Explanation:
Let us revise the trigonometry functions
- Sin(x) = opposite/hypotenuse
- Cos(x) = adjacent/hypoteouse
- Tan(x) = opposite/adjacent
- Csc(x) = hypotenuse/opposit
- Sec(x) = hypotenues/adjacent
- Cot(x) = adjacent/opposite
In the given figure
The opposite side to angle Ф = 8
The adjacent side to angle Ф = 15
Find the hypotenuse using Pythagoras' theorem
![Hypotenuse = \sqrt{8^(2)+15^(2) }](https://img.qammunity.org/2021/formulas/mathematics/college/68yu1j0g1n3x9276ye8zfxi01xei36v0uh.png)
![Hypotenuse = √(64+225)](https://img.qammunity.org/2021/formulas/mathematics/college/uq8dsq083c9hnxp5z3envph8uv65j8qsxf.png)
![Hypotenuse = √(289)](https://img.qammunity.org/2021/formulas/mathematics/college/h96zditeteosnu17sa0tsds92sqk1ba3hh.png)
![Hypotenuse = 17](https://img.qammunity.org/2021/formulas/mathematics/college/vbxw5gorp29y5pu6axiof2rumnu5yxhz5t.png)
Let us use the rules above to find the trigonometry functions
sinФ = 8/17
cosФ = 15/17
tan Ф = 8/15
csc Ф = 17/8
sec Ф = 17/15
cot Ф = 15/8