27.3k views
4 votes
Factorise m^3+m
Factorise 25-y^2
Factorise x^2+3x-28

User Zacho
by
4.5k points

2 Answers

2 votes

Answer:

1. m³ + m

= m( m² + 1) [ a² + b²]

= (a-b)² + 2ab

= m { (m –1)² + 2× m × 1 }

= m { ( m–1)² + 2m}

2. 25 – y² [ a² – b²]

= 5² – y²

= (5+y) (5–y)

3. x² + 3x –28 [ middle term factorisation]

= x² + 7x –4x –28

= x( x +7) –4 ( x + 7 )

= ( x–4) (x+7)

User Zerobu
by
4.3k points
4 votes

Factorise :-
\sf{m^(3) + m}

Solution :-


→ \ \ \sf\purple{m^(3) + m}

  • Factor out m from the expression


→\:\:\bf\red{ m * (m^(2) + 1)}

______________________

Factorise :-
\sf{25-y^(2)}

Solution :-


→\:\:\sf\purple{25-y^(2)}

  • Write the number in the exponential form with an exponent of 2


→\:\:\sf\green{5^(2) - y^(2)}

  • Using a²-b² = (a-b)(a+b), factor the expression


→\:\:\bf\red{(5-y)* (5+y)}

______________________

Factorise :-
\sf{x^(2)+3x - 28}

Solution :-


→\:\:\sf\purple{x^(2)+3x - 28}

  • Rewrite 3x as a difference


→\:\:\sf\green{x^(2)+7x-4x-28}

  • Factor the expressions


→\:\:\sf\orange{x * (x +7) -4 (x+7)}

  • Factor out x + 7 from the expression


→\:\:\bf\red{(x + 7)* (x - 4)}

User Lindstrom
by
4.2k points