Answer:
23.028 meters
Explanation:
We presume your quadratic equation is intended to be ...
h(m) = -0.09m² +2m +1.67
where h(m) is the height in meters, and m is the horizontal distance in meters. You want to find the positive value of m when h = 0.
__
The quadratic formula tells you the solution to ...
ax² +bx +c = 0
In your equation, a = -0.09, b = 2, c = 1.67, and the variable is m. The solutions given by the formula are ...

The shot landed about 23.028 meters from where it was thrown.
_____
Additional comment
The shot was launched at an angle of about 63.4° from the horizontal. Had a shallower angle been used with the same launch speed (about 16.5 m/s), the shot would have traveled farther. At about 45°, the distance might have been in excess of 29 meters.