Answer:
Step-by-step explanation:
From the given information:
We know that the thin spherical shell is on a uniform surface which implies that both the inside and outside the charge of the sphere are equal, Then
The volume charge distribution relates to the radial direction at r = R
∴
![\rho (r) \ \alpha \ \delta (r -R)](https://img.qammunity.org/2021/formulas/physics/college/o1b7e77j57212ld95756v6qu2ra4g8kbdg.png)
![\rho (r) = k \ \delta (r -R) \ \ at \ \ (r = R)](https://img.qammunity.org/2021/formulas/physics/college/s1etdvqwtkdmxrakmhc64bd0e77qbvk17n.png)
![\rho (r) = 0\ \ since \ r< R \ \ or \ \ r>R---- (1)](https://img.qammunity.org/2021/formulas/physics/college/jz6uul7b6wctcmfu7e4v87t88kmmwz4la9.png)
To find the constant k, we examine the total charge Q which is:
![Q = \int \rho (r) \ dV = \int \sigma * dA](https://img.qammunity.org/2021/formulas/physics/college/3pl9qohiw3btkjle2dtb967g8l0fde5hqi.png)
![Q = \int \rho (r) \ dV = \sigma *4 \pi R^2](https://img.qammunity.org/2021/formulas/physics/college/xvrl4d9cj77uv27f0k3ge301ww3km3kzor.png)
∴
![\int ^(2 \pi)_(0) \int ^(\pi)_(0) \int ^(R)_(0) \rho (r) r^2sin \theta \ dr \ d\theta \ d\phi = \sigma * 4 \pi R^2](https://img.qammunity.org/2021/formulas/physics/college/claejtoeo3fiphjzg7pyegfqeoho2pca6n.png)
![\int^(2 \pi)_(0) d \phi* \int ^(\pi)_(0) \ sin \theta d \theta * \int ^(R)_(0) k \delta (r -R) * r^2dr = \sigma * 4 \pi R^2](https://img.qammunity.org/2021/formulas/physics/college/xafyptmhoktqcr8rgjpppttaffhzdxnahq.png)
![(2 \pi)(2) * \int ^(R)_(0) k \delta (r -R) * r^2dr = \sigma * 4 \pi R^2](https://img.qammunity.org/2021/formulas/physics/college/xezgth77m3c8v9p8qv2py1atav3cxjz8n5.png)
Thus;
![k * 4 \pi \int ^(R)_(0) \delta (r -R) * r^2dr = \sigma * R^2](https://img.qammunity.org/2021/formulas/physics/college/4x0dku60wto7z6h0xkofzqq9hbvy16gc5h.png)
![k * \int ^(R)_(0) \delta (r -R) r^2dr = \sigma * R^2](https://img.qammunity.org/2021/formulas/physics/college/5ihcgqa7jmggdgaa18hf2nitzlrvtkb1wb.png)
![k * R^2= \sigma * R^2](https://img.qammunity.org/2021/formulas/physics/college/pxiql455u7bebb8xukgjxvj21lli044757.png)
![k = R^2 --- (2)](https://img.qammunity.org/2021/formulas/physics/college/8boersg7o6lsq07941aqfc4d58zwigm6h7.png)
Hence, from equation (1), if k =
![\sigma](https://img.qammunity.org/2021/formulas/mathematics/high-school/a9vhoz94zj78zkyosheqzpla4kkjdmop92.png)
![\mathbf{\rho (r) = \delta* \delta (r -R) \ \ at \ \ (r=R)}](https://img.qammunity.org/2021/formulas/physics/college/3hf402qnlhs0g30dmm2y2a8mf4z2ws0vya.png)
![\mathbf{\rho (r) =0 \ \ at \ \ r<R \ \ or \ \ r>R}](https://img.qammunity.org/2021/formulas/physics/college/a9hsahvrqo0r5abchdb1a5id4ylw6mard6.png)
To verify the units:
![\mathbf{\rho (r) =\sigma \ * \ \delta (r-R)}](https://img.qammunity.org/2021/formulas/physics/college/1kklcezrfah96hx6889i4vrhw3tbyjv8kt.png)
↓ ↓ ↓
c/m³ c/m³ × 1/m
Thus, the units are verified.
The integrated charge Q
![Q = \int \rho (r) \ dV \\ \\ Q = \int ^(2 \ \pi)_(0) \int ^(\pi)_(0) \int ^R_0 \rho (r) \ \ r^2 \ \ sin \theta \ dr \ d\theta \ d \phi \\ \\ Q = \int ^(2 \pi)_(0) \ d \phi \int ^(\pi)_(0) \ sin \theta \int ^R_(0) \rho (r) r^2 \ dr](https://img.qammunity.org/2021/formulas/physics/college/qcf63hxj37nqlta0o624cjfw4rgskm5bco.png)
![Q = (2 \pi) (2) \int ^R_0 \sigma * \delta (r-R) r^2 \ dr](https://img.qammunity.org/2021/formulas/physics/college/usm0kad5x9aslqj3ck8hsqot50sj9187i1.png)
![Q = 4 \pi \sigma \int ^R_0 * \delta (r-R) r^2 \ dr](https://img.qammunity.org/2021/formulas/physics/college/bu72rburefni4z9tt3jr4hv6gyv8h4fnwh.png)
since
![( \int ^(xo)_(0) (x -x_o) f(x) \ dx = f(x_o) )](https://img.qammunity.org/2021/formulas/physics/college/huo4ec9vxlqpl27kri4jtvxdqcgb7glpoa.png)
![\mathbf{Q = 4 \pi R^2 \sigma }](https://img.qammunity.org/2021/formulas/physics/college/sxxr2icttg3tyg7kz20vk8ndqys5iqp63q.png)