Answer:
f(x)=x^2+9x-10
Explanation:
Standard Form of Quadratic Function
The standard form of a quadratic function is:
![f(x)=ax^2+bx+c](https://img.qammunity.org/2021/formulas/mathematics/middle-school/hj2cyo9lipsf2imfe8tb04vftddbodxbcu.png)
where a,b, and c are constants.
The factored form of a quadratic equation is:
![f(x)=a(x-\alpha)(x-\beta)](https://img.qammunity.org/2021/formulas/mathematics/high-school/vaajdew0kuv3mvtiznxoyxvwc93l2z9xdl.png)
Where
and
are the roots or zeros of f, and a is constant.
We know the zeros of the function are 1 and -10. The function is:
![f(x)=a(x-1)(x-(-10))](https://img.qammunity.org/2021/formulas/mathematics/high-school/wsizhwpwuxg1h7m8i8c7lv2wo0mygg8hzh.png)
![f(x)=a(x-1)(x+10)](https://img.qammunity.org/2021/formulas/mathematics/high-school/jd8krg5sckkdskbcx0y1u2fuvokg4uaxbx.png)
Operating:
![f(x)=a(x^2+10x-x-10)](https://img.qammunity.org/2021/formulas/mathematics/high-school/g8khxmmfl6pf8w6olztn3p4bzjpmewbg2w.png)
Joining like terms:
![f(x)=a(x^2+9x-10)](https://img.qammunity.org/2021/formulas/mathematics/high-school/apa7cc7cghxj0fw7lw0tul06ndvtqr11za.png)
Since we are not given any more restrictions, we can choose the value of a=1, thus. the required function is:
![\boxed{f(x)=x^2+9x-10}](https://img.qammunity.org/2021/formulas/mathematics/high-school/kbgv9k9vq4u7irhbwd9mng903gyu53pkmx.png)