54.5k views
5 votes
If m2 = 125, m12= 37 and m18 = 102, find the measure of each angle

If m2 = 125, m12= 37 and m18 = 102, find the measure of each angle-example-1
User Jac Mos
by
5.8k points

1 Answer

1 vote

Answer/Step-by-step explanation:

Given:

m<2 = 125°

m<12 = 37°

m<18 = 102°

a. m<1 + m<2 = 180° (linear pair)

m<1 + 125° = 180° (substitution)

m<1 = 180° - 125°

m<1 = 55°

b. m<3 = m<18 (alternate exterior angles)

m<3 = 102° (substitution)

c. m<4 + m<3 = 180° (linear pair)

m<4 + 102° = 180° (substitution)

m<4 = 180° - 102°

m<4 = 78°

d. m<5 = m<2 (vertical angles)

m<5 = 125° (substitution)

e. m<6 = m<1 (vertical angles)

m<6 = 55° (substitution)

f. m<7 = m<12 (alternate angles)

m<7 = 37° (substitution)

g. m<8 + m<12 + m<13 = 180° (sum of triangle)

m<12 = 37° (given)

m<13 = m<18 = 102° (vertical angles)

m<8 + 37° + 102° = 180° (substitution)

m<8 + 139° = 180°

m<8 = 180° - 139°

m<8 = 41°

h. m<9 = m<18 (corresponding angles)

m<19 = 102° (substitution)

i. m<10 = m<6 (alternate interior angles)

m<10 = 55°

j. m<11 + m<6 + m<7 = 180° (sum of triangle)

m<11 + 55° + 37° = 180° (substitution)

m<11 + 92° = 180°

m<11 = 180° - 92°

m<11 = 88°

k. m<13 = m<18 (vertical angles)

m<13 = 102°

l. m<14 = m<4 (corresponding angles)

m<14 = 78°

m. m<15 = m<5 (corresponding angles)

m<15 = 125°

n. m<16 = m<6 (corresponding angles)

m<16 = 55°

o. m<17 = m<14 (vertical angles)

m<17 = 78°

User Andras Sanislo
by
5.4k points