Answer:
Option (4)
Explanation:
Table for the points from the graph attached,
x y
xy
2.2 1.8 4.84 3.24 3.96
3.2 1.8 10.24 3.24 5.76
3.6 3 12.96 9 10.8
4.8 3.5 23.04 12.25 16.8
5.2 6.2 27.04 38.44 32.24
6.4 4.5 40.96 20.25 28.8
7.5 7.8 56.25 60.84 58.5
8.5 6.2 72.25 38.44 52.7





n = 8
Formula for the correlation coefficient
![r=\frac{n\sum xy-(\sum x)(\sum y)}{\sqrt{[{n\sum x^2-(\sum x)^2][n\sum y^2-(\sum y)^2]}}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/ouimnljrp5uwdbb1ah55tzoz6ryzsjdd1d.png)
![r=\frac{8(209.56)-(41.4)(34.8)}{\sqrt{[{8(247.58)-(41.4)^2][8(185.7)-(34.8)^2]}}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/v9on7wor7nf6cylb1ltydm7lkgn1f2fn0w.png)
r =

r =

r =

r = 0.87
r ≈ 0.9
Therefore, Option (4) is the answer.