Answer:
See below
Explanation:
Given
- Initial population at 8:00 AM
- 3000000
- Growth rate = 10% = 1.1 times per 20 min
Solution
1. Table
Note. I am not sure what are the last 3 rows. Just added next 3 terms.
- 8:00 ≡ G(0) ≡ 3000000 ≡ 3000000
- 8:20 ≡ G(1) ≡ 3000000 *1.1 ≡ 3300000
- 8:40 ≡ G(2) ≡ 3000000 *1.1^2 ≡ 3630000
- 9:00 ≡ G(3) ≡ 3000000 *1.1^3 ≡ 3993000
- 9:20 ≡ G(4) ≡ 3000000 *1.1^4 ≡ 4392300
2. Population at 10:00
- Time passed since 8:00 is 2 hours = 2*3*20 min = 6* 20 min
- Population = 3000000*1.1^6 = 5314683
3. Function to reflect the population growth
- G(x) = 3000000*1.1^x
- G(x) - is dependent variable, population of bacteria
- x - is independent variable, time increment of 20 min
4. Population after 5 hours
- 5 hours = 5*3*20 min = 15*20 min
- G(15) = 3000000*1.1^15 ≈ 12531745