177k views
4 votes
Simplify completely
(X^2+x-12/x^2-x-20)/(3x^2–24x+45/12x^2-48-60)

User Monku
by
8.2k points

1 Answer

2 votes

Answer:

(4 (x^4 - 20 x^2 - 12))/(3 x^2 (9 x^2 - 32 x - 144))

Explanation:

Simplify the following:

(x^2 + x - x - 20 - 12/x^2)/((15 x^2)/4 + 3 x^2 - 24 x - 60 - 48)

Hint: | Put the fractions in x^2 + x - x - 20 - 12/x^2 over a common denominator.

Put each term in x^2 + x - x - 20 - 12/x^2 over the common denominator x^2: x^2 + x - x - 20 - 12/x^2 = x^4/x^2 + x^3/x^2 - x^3/x^2 - (20 x^2)/x^2 - 12/x^2:

(x^4/x^2 + x^3/x^2 - x^3/x^2 - (20 x^2)/x^2 - 12/x^2)/((45 x^2)/12 + 3 x^2 - 24 x - 60 - 48)

Hint: | Combine x^4/x^2 + x^3/x^2 - x^3/x^2 - (20 x^2)/x^2 - 12/x^2 into a single fraction.

x^4/x^2 + x^3/x^2 - x^3/x^2 - (20 x^2)/x^2 - 12/x^2 = (x^4 + x^3 - x^3 - 20 x^2 - 12)/x^2:

((x^4 + x^3 - x^3 - 20 x^2 - 12)/x^2)/((45 x^2)/12 + 3 x^2 - 24 x - 60 - 48)

Hint: | Group like terms in x^4 + x^3 - x^3 - 20 x^2 - 12.

Grouping like terms, x^4 + x^3 - x^3 - 20 x^2 - 12 = x^4 - 20 x^2 - 12 + (x^3 - x^3):

(x^4 - 20 x^2 - 12 + (x^3 - x^3))/(x^2 ((45 x^2)/12 + 3 x^2 - 24 x - 60 - 48))

Hint: | Look for the difference of two identical terms.

x^3 - x^3 = 0:

((x^4 - 20 x^2 - 12)/x^2)/((45 x^2)/12 + 3 x^2 - 24 x - 60 - 48)

Hint: | In (45 x^2)/12, the numbers 45 in the numerator and 12 in the denominator have gcd greater than one.

The gcd of 45 and 12 is 3, so (45 x^2)/12 = ((3×15) x^2)/(3×4) = 3/3×(15 x^2)/4 = (15 x^2)/4:

(x^4 - 20 x^2 - 12)/(x^2 (15 x^2/4 + 3 x^2 - 24 x - 60 - 48))

Hint: | Put the fractions in (15 x^2)/4 + 3 x^2 - 24 x - 60 - 48 over a common denominator.

Put each term in (15 x^2)/4 + 3 x^2 - 24 x - 60 - 48 over the common denominator 4: (15 x^2)/4 + 3 x^2 - 24 x - 60 - 48 = (15 x^2)/4 + (12 x^2)/4 - (96 x)/4 - 240/4 - 192/4:

(x^4 - 20 x^2 - 12)/(x^2 (15 x^2)/4 + (12 x^2)/4 - (96 x)/4 - 240/4 - 192/4)

Hint: | Combine (15 x^2)/4 + (12 x^2)/4 - (96 x)/4 - 240/4 - 192/4 into a single fraction.

(15 x^2)/4 + (12 x^2)/4 - (96 x)/4 - 240/4 - 192/4 = (15 x^2 + 12 x^2 - 96 x - 240 - 192)/4:

(x^4 - 20 x^2 - 12)/(x^2 (15 x^2 + 12 x^2 - 96 x - 240 - 192)/4)

Hint: | Group like terms in 15 x^2 + 12 x^2 - 96 x - 240 - 192.

Grouping like terms, 15 x^2 + 12 x^2 - 96 x - 240 - 192 = (12 x^2 + 15 x^2) - 96 x + (-192 - 240):

(x^4 - 20 x^2 - 12)/(x^2 ((12 x^2 + 15 x^2) - 96 x + (-192 - 240))/4)

Hint: | Add like terms in 12 x^2 + 15 x^2.

12 x^2 + 15 x^2 = 27 x^2:

(x^4 - 20 x^2 - 12)/(x^2 (27 x^2 - 96 x + (-192 - 240))/4)

Hint: | Evaluate -192 - 240.

-192 - 240 = -432:

(x^4 - 20 x^2 - 12)/(x^2 (27 x^2 - 96 x + -432)/4)

Hint: | Factor out the greatest common divisor of the coefficients of 27 x^2 - 96 x - 432.

Factor 3 out of 27 x^2 - 96 x - 432:

(x^4 - 20 x^2 - 12)/(x^2 (3 (9 x^2 - 32 x - 144))/4)

Hint: | Write ((x^4 - 20 x^2 - 12)/x^2)/((3 (9 x^2 - 32 x - 144))/4) as a single fraction.

Multiply the numerator by the reciprocal of the denominator, ((x^4 - 20 x^2 - 12)/x^2)/((3 (9 x^2 - 32 x - 144))/4) = (x^4 - 20 x^2 - 12)/x^2×4/(3 (9 x^2 - 32 x - 144)):

Answer: (4 (x^4 - 20 x^2 - 12))/(3 x^2 (9 x^2 - 32 x - 144))

User MouIdri
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories