Answer:
D. Rotation 270 degrees clockwise.
Explanation:
The transformation used in the coordinates below was a rotation 270 degrees clockwise, whose definition is:
![(x', y') = (r\cdot \cos (\theta - 270^(\circ)), r\cdot \sin (\theta -270^(\circ)))](https://img.qammunity.org/2021/formulas/mathematics/high-school/jqbcouyndt8all6llvbgnhwrwaubwvkvug.png)
Please note that clockwise rotation is represented by the minus sign.
Where
is the norm of original point, defined as:
,
![\forall \,x,y\in \mathbb{R}](https://img.qammunity.org/2021/formulas/mathematics/high-school/srgabrlkqlj80duk6qnao82knskq181xyu.png)
And
is the direction of the point centered at origin and with respect to +x semiaxis, measured in sexagesimal degrees:
![\theta = \tan^(-1) (y)/(x)](https://img.qammunity.org/2021/formulas/mathematics/high-school/j1obyg8yydsd3dnolcomn8bq4lfwq0k76t.png)
Now we proceed to prove the statement:
![L (x, y) = (-1, 9) \longrightarrow L'(x,y)](https://img.qammunity.org/2021/formulas/mathematics/high-school/oakbn972dpq4p9ppxjdwd5n1ij4zgedatd.png)
Norm
![r = \sqrt{(-1)^(2)+9^(2)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/y17krrc76mvcxp3srqulhvt6yyy7p8skjq.png)
![r = √(82)](https://img.qammunity.org/2021/formulas/mathematics/high-school/xu8rl34bk6negvxmm618le8w62grnc13na.png)
Direction
The point is located on 2nd quadrant, which means that
. Then:
![\theta = \tan^(-1)\left((9)/(-1) \right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/czxv8qyv38q43u1jqsdwtj1ctr1gtv0mw4.png)
![\theta = 96.340^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/high-school/y0i1ssv30ngebjyuk670zzxc2p2hgdel0r.png)
Rotation
![L'(x,y) = (√(82)\cdot \cos (96.340^(\circ)-270^(\circ)),√(82)\cdot \sin (96.340^(\circ)-270^(\circ)))](https://img.qammunity.org/2021/formulas/mathematics/high-school/erlv19bxo1vvxasqg77jajyzpa8miu154x.png)
![L'(x,y) = (-9, -1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/hk6178duv79warnzo66vwmzzgf0izbuizb.png)
![M(x,y) = (-8,8) \longrightarrow M'(x,y)](https://img.qammunity.org/2021/formulas/mathematics/high-school/sn0eplajqsxkrjx1nq3pksvdtmoiunyg77.png)
Norm
![r = \sqrt{(-8)^(2)+8^(2)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/57cl5ijd9orqr8obuzmm4ipj85djqd0hiy.png)
![r = √(128)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ir74zfesphfstnswvvnbow0oqdzau88qyi.png)
Direction
The point is located on 2nd quadrant, which means that
. Then:
![\theta = \tan^(-1)\left((8)/(-8) \right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/vo7z7nftzqm88ngpknt8ecvg0lprb71676.png)
![\theta = 135^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/high-school/zwfvybaflx15hv0javv44vk1srx9hg2536.png)
Rotation
![M'(x,y) = (√(128)\cdot \cos (135^(\circ)-270^(\circ)),√(128)\cdot \sin (135^(\circ)-270^(\circ)))](https://img.qammunity.org/2021/formulas/mathematics/high-school/iy8ohk2djdupv2cfid9mirx90baz5dakm9.png)
![M'(x,y) = (-8, -8)](https://img.qammunity.org/2021/formulas/mathematics/high-school/uiejnlrs7towzxfdbdb2n41d88u95vfdw1.png)
![N(x,y) = (-3,5)\longrightarrow N'(x,y)](https://img.qammunity.org/2021/formulas/mathematics/high-school/1oazmg13pip00mre0xjqv7xr0jnrz9k3le.png)
Norm
![r = \sqrt{(-3)^(2)+5^(2)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/sc2anfmnkc5w9nxnbvh9xg7ngrwyj7i76v.png)
![r =√(34)](https://img.qammunity.org/2021/formulas/mathematics/high-school/uy9yupawi9uo4cppeui85es07zrhcdf6wt.png)
Direction
The point is located on 2nd quadrant, which means that
. Then:
![\theta = \tan^(-1)\left((5)/(-3) \right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8mto0g5nyfpv0ps0i1q21vdhax7anskzrq.png)
![\theta = 120.964^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/high-school/uvzsjx709f6c96h5olwwboo960pjy77d8c.png)
Rotation
![N'(x,y) = (√(34)\cdot \cos (120.964^(\circ)-270^(\circ)), √(34)\cdot \cos (120.964^(\circ)-270^(\circ)))](https://img.qammunity.org/2021/formulas/mathematics/high-school/vxhqyy669ct7hjqbojl3gvz0rug9ehfasa.png)
![N'(x,y) = (-5, -3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/nt3pn4ttxzip22njtzac4tey724gnrxg3m.png)
Hence, the correct answer is D.