Answer:
-4530 J
Step-by-step explanation:
Given that
Mass of the car, m = 100 kg
Speed of the car at point A, v1 = 25 m/s
Speed at point B, v2 = 8 m/s
Radius of the track, r = 12 m and with respect to the origin of the center of the track, we say that y1 = -12 at point A and y2 = 12 at point B
We also know that
W(total) = W(grav) + W(other) = K₂ - K₁
Work done by the gravitational force, W(grav) = -U(grav) = mgy1 - mgy2
Kinetic Energy, K = ½mv²
Adding all together, we have
½mv₁² + mgy1 + W(other) = ½mv₂² + mgy2
½ * 100 * 25² + 100 * 9.8 * -12 + W = ½ * 100 * 8² + 100 * 9.8 * 12
50 * 625 + 980 * -12 + W = 50 * 64 + 980 * 12
31250 - 11760 + W = 3200 + 11760
19490 + W = 14960
W = 14960 - 19490
W = -4530 J