213,294 views
8 votes
8 votes
Rationalise the denominator of (12)/(\sqrt(10)+\sqrt(7)+\sqrt(3))

User Ccorock
by
2.6k points

1 Answer

22 votes
22 votes

Answer:


(12)/(√(10) +√(7) +√(3) )=(6√(147) +6√(63)-6√(210) )/(21 )

Explanation:


(12)/(√(10) +√(7) +√(3) )


=(12\left( √(10) -\left( √(7) +√(3) \right) \right) )/((√(10)+(√(7) +√(3 ) ))( √(10) -( √(7) +√(3))))


=(12\left( √(10) -√(7) -√(3) \right) )/(√(10^2) -(√(7) +√(3))^2)


(12\left( √(10) -√(7) -√(3) \right) )/(10-(10+2√(21) )) }


=(12\left( √(10) -√(7) -√(3) \right) )/(-2√(21) )


=(-6\left( √(10) -√(7) -√(3) \right) )/(√(21) )


=(-6\left( √(10) -√(7) -√(3) \right) )/(√(21) ) *(√(21) )/(√(21) )


=(-6√(21) \left( √(10) -√(7) -√(3) \right) )/(21 )


=(-6√(210) +6√(147) +6√(63) )/(21 )


=(6√(147) +6√(63)-6√(210) )/(21 )

Remark:

You can simplify moreover if you want to.

User Enigo
by
2.7k points