26.5k views
2 votes
Solve the following and explain your steps. Leave your answer in base-exponent form. (3^-2*4^-5*5^0)^-3*(4^-4/3^3)*3^3 please step by step!!!!

User Userend
by
8.7k points

1 Answer

2 votes

Answer:


\boxed{2^{(802)/(27)} \cdot 3^9}

Explanation:

I will try to give as many details as possible.

First of all, I just would like to say:


\text{Use } \LaTeX !

Texting in Latex is much more clear and depending on the question, just writing down without it may be confusing or ambiguous. Be together with Latex! (*^U^)人(≧V≦*)/


$(3^(-2) \cdot 4^(-5) \cdot 5^0)^(-3) \cdot (4^{-(4)/(3^3) })\cdot 3^3$

Note that


\boxed{a^(-b) = (1)/(a^b), a\\eq 0 }

The denominator can't be 0 because it would be undefined.

So, we can solve the expression inside both parentheses.


\left((1)/(3^2) \cdot (1)/(4^5) \cdot 5^0 \right)^(-3) \cdot \left(\frac{1}{4^{(4)/(3^3) } }\right)\cdot 3^3

Also,


\boxed{a^(0) = 1, a\\eq 0 }


\left((1)/(9) \cdot (1)/(1024) \cdot 1 \right)^(-3) \cdot \left(\frac{1}{4^{(4)/(27) } }\right)\cdot 27

Note


\boxed{(1)/(a) \cdot (1)/(b)= (1)/(ab) , a, b \\eq 0}


\left((1)/(9216) \right)^(-3) \cdot \left(\frac{1}{4^{(4)/(27) } }\right)\cdot 27


\left((1)/(9216) \right)^(-3) \cdot \left(\frac{27}{4^{(4)/(27) } }\right)


\left( (1)/(\left((1)/(9216)\right)^3) \right)\cdot \left(\frac{27}{4^{(4)/(9) } }\right)


\left( (1)/(\left((1)/(9216)\right)^3) \right)\cdot \left(\frac{27}{4^{(4)/(27) } }\right)

Note


\boxed{(1)/((1)/(a) ) = a}


9216^3\cdot \left(\frac{27}{4^{(4)/(9) } }\right)


\left(\frac{ 9216^3\cdot 27}{4^{(4)/(27) } }\right)

Once


9216=2^(10)\cdot 3^2 \implies 9216^3=2^(30)\cdot 3^6


\boxed{(a \cdot b)^n=a^n \cdot b^n}

And


$4^{(4)/(27)} = 2^{(8)/(27) $

We have


\left(\frac{ 2^(30) \cdot 3^6\cdot 27}{2^{(8)/(27) } }\right)

Also, once


\boxed{(c^a)/(c^b)=c^(a-b)}


2^{30-(8)/(27)} \cdot 3^6\cdot 27

As


30-(8)/(27) = (30 \cdot 27)/(27)-(8)/(27) =(802)/(27)


2^{30-(8)/(27)} \cdot 3^6\cdot 27 = 2^{(802)/(27)} \cdot 3^6 \cdot 3^3


2^{(802)/(27)} \cdot 3^9

User Glen Balliet
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories