Answer: h = 2.7 R - 1.7 r
Explanation:
normally, force is 0 at the top ;
-N - mg = - m v^2 / ( R - r )
-0 - mg = (- mv^2) / ( R-r )
mg = (mv^2) / (R - r)
g = v^2 / ( R - r ) ; ----------------equation 1
conservation of energy ;
ΔK + ΔP = 0 ;
1/2 I ω^2 + 1/2 m v^2 + mg ( h2 - h1 ) = 0 ;
0.5 * ( 2/5 ) m r^2 * ( v / r )^2 + 0.5 m v^2 + mg ( ( 2R - r ) -h ) = 0 ;
0.5 * ( 2/5 ) m r^2 * ( v / r )^2 + 0.5 m v^2 = mg ( - 2R + r + h ) ;
0.5 * ( 2/5 )r^2 * ( v / r )^2 + 0.5 v^2 = g ( - 2R + r + h ) ;
0.5 * ( 2/5 ) v^2 + 0.5 v^2 = g ( - 2R + r + h ) ;
[ 0.5 * ( 2/5 ) + 0.5 ] v^2 = g ( - 2R + r + h ) ;-------------equation 2
from equation 1 , v^2 = g ( R - r ), input in equation 2
[ 0.5 * ( 2/5 ) + 0.5 ] [ g ( R - r ) ] = g ( - 2R + r + h )
[ 0.5 * ( 2/5 ) + 0.5 ] [ ( R - r ) ] = ( - 2R + r + h )
0.7 ( R - r ) = h - 2R + r
0.7R - 0.7r = h - 2R + r
solve for h
h = 0.7R + 2R - 0.7r - r
h = 2.7 R - 1.7 r