193k views
0 votes
Solve using the Quadratic Formula. 3x2 - 7x - 3 = 0

1 Answer

6 votes

Answer:


\displaystyle x_1=(7+ √(85))/(6)\approx 2.70\\\displaystyle x_2=(7- √(85))/(6)\approx -0.37

Explanation:

Quadratic Formula

Given the second-degree equation:


ax^2+bx+c=0

The solutions of the equation can be obtained by applying the formula:


\displaystyle x=(-b\pm √(b^2-4ac))/(2a)

The equation to solve is:


3x^2-7x-3=0

Which means the values of the coefficients are: a=3, b=-7, c=-3. Substituting the values in the formula:


\displaystyle x=(-(-7)\pm √((-7)^2-4(3)(-3)))/(2(3))


\displaystyle x=(7\pm √(49+36))/(6)


\displaystyle x=(7\pm √(85))/(6)

There are two real solutions for this equation:


\displaystyle x_1=(7+ √(85))/(6)


\displaystyle x_2=(7- √(85))/(6)

The approximate values of both roots are:


x_1\approx 2.70


x_2\approx -0.37

User Travis Beck
by
4.2k points