Recall the double angle identity for cosine:
![\cos(2x) = \cos^2(x) - \sin^2(x) = 1 - 2 \sin^2(x)](https://img.qammunity.org/2023/formulas/mathematics/college/em7xb62l48sodb8cr6ubry7fgh5c0vigoi.png)
It follows that
![\sin^2(x) = \frac{1 - \cos(2x)}2 \implies \sin(x) = \pm \sqrt{\frac{1-\cos(2x)}2} \implies \csc(x) = \pm \sqrt{\frac2{1-\cos(2x)}}](https://img.qammunity.org/2023/formulas/mathematics/college/u2ln9nmorjs3tl4chs0uepas0xucg3h8u7.png)
Since 0° < 22° < 90°, we know that sin(22°) must be positive, so csc(22°) is also positive. Let x = 22°; then the closest answer would be C,
![\csc(22^\circ) = \sqrt{\frac2{1-\cos(44^\circ)}} = \sqrt{\frac2{1-\frac5{13}}} = \frac{√(13)}2](https://img.qammunity.org/2023/formulas/mathematics/college/gciycqucqxlu7kf2dak21943bt3uepzxsz.png)
but the problem is that none of these claims are true; cot(32°) ≠ 4/3, cos(44°) ≠ 5/13, and csc(22°) ≠ √13/2...