Answer:
see proof below
Explanation:
cot(2a) = (cot^2a - 1)/2cota
Remember that cotangent is the inverse of tan...
cot = 1/tan => cot(2a) = 1/tan2a
Here I used the formula for tan2a, or in other words tan2a = 2tana/1 - tan^2a
Therefore the inverse of tan2a, 1/tan2a, should be the inverse of 2tanA/1 - tan^2a, or 1 - tan^2a/2tana => 1/tan2a = 1 - tan^2a/2tana = cot(2a)
The reverse is true as well, tan is the inverse of cotangent...tanA = 1/cotA
cot(2a) = 1 - tan^2a/2tana = 1 - (1/cot^2a)/2(1/cota)
= cot^2a - 1/cot^2a * cota/2
= cot^2a - 1/2cota
L.H.S = R.H.S, hence proved