46.0k views
4 votes
Derive: How?


\cot(2a) = \frac{ {2cot}^(2)a - 1}{2cota}
Please write all steps. [ using compound angle formula]


User Bvulaj
by
5.2k points

2 Answers

4 votes

Answer:

see proof below

Explanation:

cot(2a) = (cot^2a - 1)/2cota

Remember that cotangent is the inverse of tan...

cot = 1/tan => cot(2a) = 1/tan2a

Here I used the formula for tan2a, or in other words tan2a = 2tana/1 - tan^2a

Therefore the inverse of tan2a, 1/tan2a, should be the inverse of 2tanA/1 - tan^2a, or 1 - tan^2a/2tana => 1/tan2a = 1 - tan^2a/2tana = cot(2a)

The reverse is true as well, tan is the inverse of cotangent...tanA = 1/cotA

cot(2a) = 1 - tan^2a/2tana = 1 - (1/cot^2a)/2(1/cota)

= cot^2a - 1/cot^2a * cota/2

= cot^2a - 1/2cota

L.H.S = R.H.S, hence proved

User Eric Tucker
by
4.7k points
4 votes

Answer: see proof below

Explanation:

Note: The given equation cannot be proven. Instead I will prove:


\cot(2\alpha)=(\cot^2\alpha-1)/(2\cot \alpha)

Use the Reciprocal Identity: cot A = (cos A)/(sin A)

Use the following Double Angle Identities:

cos (2A) = cos² A - sin² A

sin (2A) = 2 sin A · cos A

Proof LHS → RHS:

LHS: cot (2A)


\text{Reciprocal:}\qquad \qquad (\cos (2\alpha))/(\sin (2\alpha))


\text{Double Angle:}\qquad \quad (\cos^2 \alpha-\sin^2 \alpha)/(2\sin \alpha \cdot \cos \alpha)


\text{Manipulate:}\qquad \quad (\cos^2 \alpha-\sin^2 \alpha)/(2\sin \alpha \cdot \cos \alpha)\bigg(((1)/(\sin^2 \alpha))/((1)/(\sin^2 \alpha))\bigg)


=((\cos^2 \alpha)/(\sin^2 \alpha)-(\sin^2 \alpha)/(\sin^2 \alpha))/((2\sin \alpa \cdot \cos \alpha)/(\sin \alpha \cdot \sin \alpha))


=(\cot^2 \alpha-1)/(2\cot \alpha)

LHS = RHS
\checkmark

Derive: How? \cot(2a) = \frac{ {2cot}^(2)a - 1}{2cota} Please write all steps. [ using-example-1
Derive: How? \cot(2a) = \frac{ {2cot}^(2)a - 1}{2cota} Please write all steps. [ using-example-2
User Rigerta
by
3.9k points