Answer:
Explained below.
Explanation:
The information provided is:
Mean Standard Deviation
10 drops of water 4 0.61
10 drops of cellulase 3.5 0.50
10 drops of pectinase 12.5 0.71
5 drops of pectinase 10 0.82
+ 5 drops of cellulase
- Calculate the standard error of the mean (SE) and 95% confidence interval for the group "10 drops of water" as follows:
![SE=(s)/(√(n))=(0.61)/(√(10))=0.192899\approx 0.1929](https://img.qammunity.org/2021/formulas/mathematics/college/2zbrq2b5fbhkkobab4h9qwf8eesyz5ai5g.png)
![CI=\bar x\pm t_(\alpha/2)* SE\\\\=4\pm 2.262* 0.1929\\\\=(3.5636602,\ 4.4363398)\\\\\approx (3.56, 4.44)](https://img.qammunity.org/2021/formulas/mathematics/college/x2hbdj091ccuu3fv4or3ipjbhmyf0hp1rn.png)
- Calculate the standard error of the mean (SE) and 95% confidence interval for the group "10 drops of cellulase " as follows:
![SE=(s)/(√(n))=(0.50)/(√(10))=0.1581139\approx 0.1581](https://img.qammunity.org/2021/formulas/mathematics/college/xbphfhed8z4l6bsq2qu81u08txu5z3sfya.png)
![CI=\bar x\pm t_(\alpha/2)* SE\\\\=3.5\pm 2.262* 0.1581\\\\=(3.1423778,\ 3.8576222)\\\\\approx (3.14, 3.86)](https://img.qammunity.org/2021/formulas/mathematics/college/o0dpp9v3nwj6vjlbgevl6i9ezif58h9cjb.png)
- Calculate the standard error of the mean (SE) and 95% confidence interval for the group "10 drops of pectinase" as follows:
![SE=(s)/(√(n))=(0.71)/(√(10))=0.2245217\approx 0.2245](https://img.qammunity.org/2021/formulas/mathematics/college/93jfi0cnu4usf292xqv7dyxgmn0fg0caz7.png)
![CI=\bar x\pm t_(\alpha/2)* SE\\\\=12.5\pm 2.262* 0.2245\\\\=(11.992181,\ 13.007819)\\\\\approx (11.99, 13.01)](https://img.qammunity.org/2021/formulas/mathematics/college/29p1c6ju8fevw2lwlrtxaae408aoxv204y.png)
- Calculate the standard error of the mean (SE) and 95% confidence interval for the group "5 drops of pectinase + 5 drops of cellulase" as follows:
![SE=(s)/(√(n))=(0.82)/(√(10))=0.25930677\approx 0.2593](https://img.qammunity.org/2021/formulas/mathematics/college/k49da6lxeizh2c7omw24r1l5cz1zq1yomh.png)
![CI=\bar x\pm t_(\alpha/2)* SE\\\\=10\pm 2.262* 0.2593\\\\=(9.4134634,\ 10.5865366)\\\\\approx (9.41, 10.59)](https://img.qammunity.org/2021/formulas/mathematics/college/rxzto10ivi5qy0asdhzwry505l2llgsf82.png)
The critical value of t is computed using the t-table for 95% confidence level and (n - 1) 9 degrees of freedom.