Answer:
x^8
Explanation:
Simplify the following:
(x^2 x^3)/(x^(-2) x^2 x^(-3))
Multiply the numerator of (x^3)/((x^2)/(x^2) x^(-3)) by the reciprocal of the denominator. (x^3)/((x^2)/(x^2) x^(-3)) = (x^3 x^3)/((x^2)/(x^2)):
x^2 (x^3 x^3)/((x^2)/(x^2))
(x^3 x^3 x^2)/((x^2)/(x^2)) = x^2/x^2×(x^3 x^3)/x^(-2) = (x^3 x^3)/x^(-2):
(x^3 x^3)/x^(-2)
Combine powers. (x^3 x^3)/x^(-2) = x^(3 + 3 + 2):
x^(3 + 3 + 2)
3 + 3 + 2 = 8:
Answer: x^8