Answer:
![x=18\textdegree](https://img.qammunity.org/2021/formulas/mathematics/college/xrrbdk6hyypxnmrkhypv426monx8mlh8wq.png)
Explanation:
We are given the equation:
![\sin(2x)\sin(3x)=\cos(2x)\cos(3x)](https://img.qammunity.org/2021/formulas/mathematics/college/5wxgiihr0u3tksku9qaziggub25aagy1ra.png)
And we want to find the smallest positive value of x such that it makes the equation true.
We can rewrite our equations as:
![\displaystyle \cos(2x)\cos(3x) - \sin(2x)\sin(3x) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/w7jlhkh1k9r34bh4jhet2063ffx7gmaahl.png)
Recall that:
![\displaystyle \cos (\alpha + \beta) = \cos \alpha\cos-\sin\alpha\sin\beta](https://img.qammunity.org/2021/formulas/mathematics/college/cjpayjtmxxj4adh1ev2guog692km4aaegc.png)
Therefore, by letting α = 2x and β = 3x, we obtain:
![\displaystyle \begin{aligned} \cos(2x)\cos(3x) - \sin(2x)\sin(3x) & = \cos (2x + 3x) \\ \\ &= \cos 5x \end{aligned}](https://img.qammunity.org/2021/formulas/mathematics/college/5ifmj6pp863dc1j2fj1ba51h90c7k8vc8g.png)
Hence:
![\displaystyle \cos 5x = 0](https://img.qammunity.org/2021/formulas/mathematics/college/ugmbld9i4iwt81hbff101o0xsb6lz3lyf0.png)
Recall the Unit Circle. The smallest angle value for which cosine equals 0 is cos(90°). Thus:
![\displaystyle 5x = 90^\circ](https://img.qammunity.org/2021/formulas/mathematics/college/x34tkf0njneqt96huy1ja7ymgwpdaji8io.png)
Therefore:
![\displaystyle x = 18^\circ](https://img.qammunity.org/2021/formulas/mathematics/college/ml28696kffdbdy2zltrn2ifgecncnldwl2.png)
In conclusion:
![\displaystyle x = 18^\circ](https://img.qammunity.org/2021/formulas/mathematics/college/ml28696kffdbdy2zltrn2ifgecncnldwl2.png)