73.6k views
5 votes
[Calc 1] stuck on how to do this. I know the product and quotient rules, I think if someone can just explain (a) I would be able to do the rest

[Calc 1] stuck on how to do this. I know the product and quotient rules, I think if-example-1
User Jungeun
by
7.7k points

1 Answer

1 vote

Part (a)

h(x) = 4*f(x) + 3*g(x)

h ' (x) = d/dx[ 4*f(x) + 3*g(x)]

h ' (x) = d/dx[ 4*f(x) ] + d/dx[ 3*g(x)] ... sum rule

h ' (x) = 4*d/dx[ f(x) ] + 3*d/dx[ g(x)] ... constant multiple rule

h ' (x) = 4*f ' (x) + 3*g ' (x)

h ' (2) = 4*f ' (2) + 3*g ' (2) ... plug in x = 2

h ' (2) = 4*(-2) + 3*(3) ... substitution

h ' (2) = 1

Answer: 1

=======================================================

Part (b)

h(x) = f(x)*g(x)

h ' (x) = f ' (x)*g(x) + f(x)*g ' (x) ... product rule

h ' (2) = f ' (2)*g(2) + f(2)*g ' (2) ... plug in x = 2

h ' (2) = -2*5 + (-4)*3 ... substitution

h ' (2) = -22

Answer: -22

=======================================================

Part (c)

h(x) = f(x)/g(x)

h(x) = [f ' (x)*g(x) - g ' (x)*f(x)]/[ (g(x))^2 ] ... quotient rule

h(2) = [f ' (2)*g(2) - g ' (2)*f(2)]/[ (g(2))^2 ] ... plug in x = 2

h(2) = [-2*5 - 3*(-4)]/[ (5)^2 ] ... substitution

h(2) = 2/25

Answer: 2/25

=======================================================

Part (d)

k(x) = 1 + f(x) ... helps simplify the denominator

k(2) = 1 + f(2) ... plug in x = 2

k(2) = 1 + (-4) ... substitution

k(2) = -3

------

k(x) = 1 + f(x)

k ' (x) = 0 + f ' (x)

k ' (x) = f ' (x)

k ' (2) = f ' (2) ... plug in x = 2

k ' (2) = -2

------

h(x) = g(x)/(1 + f(x))

h(x) = g(x)/k(x)

h ' (x) = [g ' (x)*k(x) - k ' (x)*g(x)]/[ (k(x))^2 ] ... quotient rule

h ' (2) = [g ' (2)*k(2) - k ' (2)*g(2)]/[ (k(2))^2 ] ... plug in x = 2

h ' (2) = [3*(-3) - (-2)*5]/[ (-3)^2 ] ... substitution

h ' (2) = 1/9

Answer: 1/9

User Ydhem
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories