Answer:
36 units
Explanation:
Perimeter of the triangle is the total distances between the vertices which can be calculated as follows using distance formula where necessary:
Distance between (-1, -4) and (9, -4):
This can be calculated without using the distance formula.
The distance between both vertices = |9 -(-1)| = 10 units
Distance between (-1, -4) and (4, 8):
![d = √((x_2 - x_1)^2 + (y_2 - y_1)^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/z9cahkzclgonb9umdtmpk57jqqr3gyakad.png)
Let,
![(-1, -4) = (x_1, y_1)](https://img.qammunity.org/2021/formulas/mathematics/college/dkbynj359saoaxt9uotrxoaa0gwn95t3oq.png)
![(4, 8) = (x_2, y_2)](https://img.qammunity.org/2021/formulas/mathematics/college/wvqgzlzli99742ddumbi0cju2gi4caz6ca.png)
![d = √((4 -(-1))^2 + (8 - (-4))^2)](https://img.qammunity.org/2021/formulas/mathematics/college/bcram4zpzg8hw31wdsunypqo2zpleta9xh.png)
![d = √((5)^2 + (12)^2)](https://img.qammunity.org/2021/formulas/mathematics/college/o134o94tbzgcurw9k826hgf36acanmajzb.png)
![d = √(25 + 144) = √(169)](https://img.qammunity.org/2021/formulas/mathematics/college/2l9hp96afe7gwzvm7ikhsjaxnvkf3luj3o.png)
Distance between (9, -4) and (4, 8):
![d = √((x_2 - x_1)^2 + (y_2 - y_1)^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/z9cahkzclgonb9umdtmpk57jqqr3gyakad.png)
Let,
![(9, -4) = (x_1, y_1)](https://img.qammunity.org/2021/formulas/mathematics/college/7q0fmp8xew8ox65y3i87vcq82keeribnhd.png)
![(4, 8) = (x_2, y_2)](https://img.qammunity.org/2021/formulas/mathematics/college/wvqgzlzli99742ddumbi0cju2gi4caz6ca.png)
![d = √((4 - 9)^2 + (8 - (-4))^2)](https://img.qammunity.org/2021/formulas/mathematics/college/tk0dil4y5yjxio7jtx6a3r7uw1hiwp86fh.png)
![d = √((-5)^2 + (12)^2)](https://img.qammunity.org/2021/formulas/mathematics/college/87k4y0yyjmn85pxjjhped0wo8v99nak6h1.png)
![d = √(25 + 144) = √(169)](https://img.qammunity.org/2021/formulas/mathematics/college/2l9hp96afe7gwzvm7ikhsjaxnvkf3luj3o.png)
Perimeter = 10 + 13 + 13 = 36 units