Answer:
![\displaystyle x-y=(24)/(25)](https://img.qammunity.org/2021/formulas/mathematics/high-school/mg3u53hs0zr7mtrhte3w6bfmi9yn3si0rz.png)
Explanation:
We are given the system:
![\left\{ \begin{array}{ll} 10x-16y=12 & \quad \\ 5x-3y=4& \quad \end{array} \right.](https://img.qammunity.org/2021/formulas/mathematics/high-school/m6qqdw2y9mo204a40w5ymfivw3qhb8rc2i.png)
And asked to find the value of x - y if (x, y) is a solution to the above system.
Thus, let's solve the system. We can use eliminiation
We can see that the coefficients of x share a LCM.
Multiplying the second equation by negative two yields:
![\left\{ \begin{array}{ll} 10x-16y=12 & \quad \\ -10x+6y=-8 & \quad \end{array} \right.](https://img.qammunity.org/2021/formulas/mathematics/high-school/nfnoa19q3uzqa2bpqdpaje4k9l07v2g75o.png)
Adding the two equations yields:
![(10x-10x)+(-16y+6y)=(12+(-8))](https://img.qammunity.org/2021/formulas/mathematics/high-school/oke7q1stfxmqgt6xjr0jclb0xly1obt99p.png)
Simplify:
![-10y=4](https://img.qammunity.org/2021/formulas/mathematics/high-school/uju9t8ugs6hk3a03j5jvperzprz1w7ewf4.png)
Solve for y:
![\displaystyle y = (4)/((-10)) = -(2)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/qm52c73sq8lde1izlj3o22dbc6wrli1zns.png)
To find x, substitute y for either equation and evaluate. The second equation states that:
![5x-3y=4](https://img.qammunity.org/2021/formulas/mathematics/high-school/l6t3co9u0eq4fxl81jtl289mwljms9xp25.png)
Substitute:
![\displaystyle 5x-3\left(-(2)/(5)\right)=4](https://img.qammunity.org/2021/formulas/mathematics/high-school/2b9bfk5sggttmr383nffp4diax4zxs00m8.png)
Multiply:
![\displaystyle 5x+(6)/(5)=4](https://img.qammunity.org/2021/formulas/mathematics/high-school/4th0la1uchvksnh0zkf9am0rhc6r1py61n.png)
And solve for x:
![\displaystyle \begin{aligned} 5x+(6)/(5) &= 4 \\ \\ 5x &= (14)/(5) \\ \\ x &= (14)/(25)\end{aligned}](https://img.qammunity.org/2021/formulas/mathematics/high-school/2qov8nxunbnlnptpli1065og7u1b0qozgp.png)
Hence, our solution to the system is:
![\displaystyle \left((14)/(25),- (2)/(5)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/or8yns954k1esd2be41kohmkvqmoichqgj.png)
We want to find the value of:
![x-y](https://img.qammunity.org/2021/formulas/mathematics/middle-school/8wj4r34f5ztqxyfd6l2mjwhtprv9jm9omw.png)
Substitute:
![\displaystyle = \left((14)/(25)\right) - \left(-(2)/(5)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/12qc4ezr2dvmw7ihvwo3mdw837puw16rv8.png)
Evaluate. Hence:
![\displaystyle x - y = (24)/(25)](https://img.qammunity.org/2021/formulas/mathematics/high-school/pw05jwhfqcz2vezpzykp5x7fhjh470cpqw.png)
And we're done!