21.6k views
4 votes
A car is traveling at sea level at 78 mi/h on a 4% upgrade before the driver sees a fallen tree in the roadway 150 feet away. The coefficient of road adhesion is 0.8. The car weighs 2700 lb, has a drag coefficient of 0.35, a frontal area of 18 ft2, and a coefficient of rolling friction approximated as 0.017 for all speed conditions. The car has an antilock braking system that gives it a braking efficiency of 100%. If the driver first applies the brakes 150 ft from the tree, how fast will the car be traveling when it reaches the tree? Include the effect of aerodynamic resistance.

User Luksan
by
5.1k points

1 Answer

2 votes

Answer: V = 47.7 mi/hr

Explanation:

first we calculate elements of aero-dynamic resistance

Ka = p/2 * CD * A.f

p is the density of air(0.002378 slugs/ft^3) for zero altitude, CD is the drag coefficient(0.35) and A.f is the front region of the vehicle

so we substitute

Ka = 0.002378/2 * 0.35 * 18

Ka = 0.00749

Now we calculate the final speed of the vehicle (V2) using the relation;

S = (YbW/2gKa)In[ (UW + KaV1^2 + FriW ± Wsinθg) / (UW + KaV2^2 + FriW ± Wsinθg)

so

WE SUBSTITUTE

150 = (1.04 * 2700 / 2 * 32.2 * 0.0075) In [(0.8 * 2700 + 0.0075 *(78mil/hr * 5280ft/1min * 1hr/3600s)^2 + 0.017 * 2700 ± 2700 * 0.04) / (0.8 * 2700 + 0.0075 * V2^2 + 0.017 * 2700 ± 2700 * 0.04)]

150 = (2808/0.483) In [(2160 + 98.16 + 153.9) / ( 2160 + 0.0075V2^2 + 153.9)]

150 = 5813.66 In [ (2160 + 98.16 + 153.9) / ( 2160 + 0.0075V2^2 + 153.9)]

divide both sides by 5813.66

0.0258 = In [ (2412.06) / ( 0.0075V2^2 + 2313.9)]

take the e^ of both side

e^0.0258 = (2412.06) / ( 0.0075V2^2 + 2313.9)

1.0261 = (2412.06) / ( 0.0075V2^2 + 2313.9)]

(0.0075V2^2 + 2313.9) = 2412.06 / 1.0261

(0.0075V2^2 + 2313.9) = 2350.7

0.0075V2^2 = 2350.7 - 2313.9

0.0075V2^2 = 36.8

V2^2 = 36.8 / 0.0075

V2^2 = 4906.6666

V2 = √4906.6666

V2 = 70.0476 ft/s

converting to miles per hour

V2 = 70.0476 ft/s * 1 mil / 5280 ft * 3600s / 1hr

V = 47.7 mi/hr

User Reefwing
by
4.6k points